Radiation diagnostics of cerebral cavernous malformations

Cover Page

Cite item

Abstract

Cerebral cavernous malformations are a fairly common vascular pathology at the moment, with the number of detected cases increasing dramatically in recent years. This is because modern neuroimaging methods such as computed tomography (CT) and magnetic resonance imaging (MRI) have been introduced into clinical practice and are widely available. Prior to the advent of CT and MRI technologies, it was extremely difficult to diagnose this pathology, and the diagnosis was usually made intraoperatively or based on autopsy data. Further, the literature review is devoted to the radiological diagnosis of cerebral cavernous malformations (CM). The role of neuroimaging methods in the diagnosis of cavernous malformations, as well as the use of MRI for CM visualization, was analyzed. The advantages of MRI over other neuroimaging methods for this pathology have been demonstrated. Pulse sequences of MRI and signaling characteristics of various foci were characterized, depending on the morphological substrate. The significance of the susceptibility-weighted imaging sequence was also evaluated for the detection of multifocal lesions in cases of familial CM. The study of the main pulse sequences of MRI for visualization of CM will improve the protocol algorithm for the timely diagnosis of this pathology and the selection of therapeutic approach.

About the authors

Elena N. Girya

Sklifosovsky Research Institute for Emergency Medicine

Author for correspondence.
Email: mishka_77@list.ru
ORCID iD: 0000-0001-5875-1489
SPIN-code: 4793-7748

Radiologist of Radiosurgery Department

Russian Federation, Moscow, Bol'shaya Sukharevskaya ploshcad', 3, 129010

Valentin E. Sinitsyn

Lomonosov Moscow State University

Email: vsini@mail.ru
ORCID iD: 0000-0002-5649-2193
SPIN-code: 8449-6590

MD, PhD, DSc, Professor, Head of the Department of Radiation Diagnostics

 
Russian Federation, Moscow, Lomonosovsky prospect, 27, bldg. 10, 119192

Alexey S. Tokarev

Sklifosovsky Research Institute for Emergency Medicine; Moscow Health Department

Email: alex_am_00@mail.ru
ORCID iD: 0000-0002-8415-5602
SPIN-code: 1608-0630

MD, Cand. Sci. (Med.), Deputy Head of Moscow Health Department, Neurosurgeon of Radiosurgery Department 

Russian Federation, Moscow; Moscow, Oruzheyny lane, 43, 127006

References

  1. Mukha AM, Dashyan VG, Krylov VV. Cavernous malformations of the brain. Nevrologicheskii zhurnal. 2013;18(5):46–51. (In Russ).
  2. Popov VE, Livshits MI, Bashlachev MG, Nalivkin AE. Cavernous malformations in children: a literature review. Almanach klinicheskoj mediciny. 2018;46(2):146–159. (In Russ).
  3. Caton MT, Shenoy VS. Cerebral Cavernous Malformations. In: StatPearls [Internet]. Treasure Island(FL): StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538144
  4. Flemming KD, Brown RD. Epidemiology and natural history of intracranial vascular malformations. In: H.R. Winn, ed. Youmans and Winn neurological surgery, 7th ed. Amsterdam: Elsevier; 2017. Р. 3446–3463е7.
  5. Gotko AV, Kivelev JV, Sleep AS. Cavernous malformations of the brain and spinal cord. Ukrainskij nejroxirurgicheskij zhurnal. 2013;(3):10–15. (In Russ).
  6. Rodich A, Smeyanovich A, Sidorovich R, et al. Modern approaches to the surgical treatment of cavernous angiomas of the brain. Nauka i innovacii. 2018;10(188):70–73. (In Russ).
  7. Gross BA, Du R. Natural history of cerebral arteriovenous malformations: a meta-analysis. J. Neurosurg. 2013;118(2):437–443. doi: 10.3171/2012.10.JNS121280
  8. Kearns KN, Chen CJ, Tvrdik P, et al. Outcomes of Surgery for Brainstem Cavernous Malformations: A Systematic Review. Stroke. 2019;50(10):2964–2966. doi: 10.1161/STROKEAHA.119.026120
  9. Sazonov IA, Belousova OB. Cavernous malformation, which caused the development of extensive acute subdural hematoma. Case study and literature review. Voprosy nejrokhirurgii imeni N.N. Burdenko. 2019;3(3):73–76. (In Russ).
  10. Mouchtouris N, Chalouhi N, Chitale A, et al. Management of cerebral cavernous malformations: from diagnosis to treatment. Scientific World Journal. 2015;2015:808314. doi: 10.1155/2015/808314
  11. Negoto T, Terachi S, Baba Y, et al. Symptomatic brainstem cavernoma of elderly patients: timing and strategy of surgical treatment. Two case reports and review of the literature. World Neurosurg. 2018;111:227–234. doi: 10.1016/j.wneu.2017.12.111
  12. Runnels JB, Gifford DB, Forsberg PL, et al. Dense calcification in a large cavernous angioma. Case report. J Neurosurg. 1969;30(3):293–298. doi: 10.3171/jns.1969.30.3part1.0293
  13. Batra S, Lin D, Recinos PF, et al. Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol. 2009;5(12):659–670. doi: 10.1038/nrneurol.2009.177
  14. Vaquero J, Leunda G, Martinez R, et al. Cavernomas of the brain. Neurosurgery. 1983;12:208–210. doi: 10.1227/00006123-198302000-00013
  15. Tagle P, Huete I, Mendez J, et al. Intracranial cavernous angioma: presentation and management. J Neurosurg. 1986;64:720–723. doi: 10.3171/jns.1986.64.5.0720
  16. Rigamonti D, Drayer BP, Johnson PC, et al. The MRI appearance of cavernous malformations (angiomas). J Neurosurg. 1987;67(4):518–524. doi: 10.3171/jns.1987.67.4.0518
  17. Cortés V, Concepción A, Ballenilla M, et al. Cerebral cavernous malformations: Spectrum of neuroradiological findings. Radiologia. 2012;54(5):401–409. doi: 10.1016/j.rx.2011.09.016
  18. Pozzati E, Padovani R, Morrone B, et al. Cerebral cavernous angiomas in children. J Neurosurg. 1980;5(3):826–832. doi: o10.3171/jns.1980.53.6.0826
  19. Jonutis AJ, Sondheimer FK, Klein HZ, et al. Intracerebral cavernous hemangioma with angiographically demonstrated pathologic vasculature. Neuroradiology. 1971;3(3):57–63. doi: 10.1007/BF00339895
  20. Kamrin RB, Buchsbaum HW. Large vascular malformations of the brain not visualized by serial angiography. Arch Neurol. 1965;13(4):413–420. doi: 10.1001/archneur.1965.00470040079013
  21. Jain KK, Robertson E. Recurrence of an excised cavernous hemangioma in the opposite cerebral hemisphere. Case report. J Neurosurg. 1970;33(4):453–456. doi: 10.3171/jns.1970.33.4.0453
  22. Batra S, Lin D, Recinos PF, et al. Cavernous malformations: natural history, diagnosis and treatment. Nat Rev Neurol. 2009;5(12):659–670. doi: 10.1038/nrneurol.2009.177.
  23. Yun TJ, Na DG, Kwon BJ, et al. A T1 hyperintense perilesional signal aids in the differentiation of a cavernous angioma from other hemorrhagic masses. AJNR Am J Neuroradiol. 2008;29(3):494–500. doi: 10.3174/ajnr.A0847
  24. Petersen TA, Morrison LA, Schrader RM, et al. Familial versus sporadic cavernous malformations: differences in developmental venous anomaly association and lesion phenotype. AJNR Am J Neuroradiol. 2019;31(2):377–382. doi: 10.3174/ajnr.A1822
  25. Zabramski JM, Wascher TM, Spetzler RF, et al. The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg. 1994;80(3):422–432. doi: 10.3171/jns.1994.80.3.0422
  26. Essig M, Reichenbach JR, Schad LR, et al. High-resolution MR venography of cerebral arteriovenous malformations. Magn Reson Imaging. 1999;17(3):1417–1425. doi: 10.1007/s001170050989
  27. Lee BC, Vo KD, Kido DK, et al. MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions. AJNR Am. J. Neuroradiol. 1999;20(7):1239–1242.
  28. Cooper AD, Campeau NG, Meissner I. Susceptibility-weighted imaging in familial cerebral cavernous malformations. Neurology. 2008;71(5):382. doi: 10.1212/01.wnl.0000319659.86629.c8
  29. De Souza JM, Domingues RC, Cruz J, et al. Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol. 2008;29(1):154–158. doi: 10.3174/ajnr.A0748
  30. Bulut HT, Sarica MA, Baykan AH. The value of susceptibility weighted magnetic resonance imaging in evaluation of patients with familial cerebral cavernous angioma. Int J Clin Exp Med. 2014;7(12):5296–5302.
  31. De Champfleur NM, Langlois C, Ankenbrandt WJ, et al. Magnetic resonance imaging evaluation of cerebral cavernous malformations with susceptibility-weighted imaging. Neurosurgery. 2011;68(3):641–648. doi: 10.1227/NEU.0b013e31820773cf
  32. Campbell PG, Jabbour P, Yadla S, Awad IA. Emerging clinical imaging techniques for cerebral cavernous malformations: a systematic review. Neurosurg Focus. 2010;29(3):E6. doi: 10.3171/2010.5.FOCUS10120
  33. Pinker K, Stavrou I, Szomolanyi P, et al. Improved preoperative evaluation of cerebral cavernomas by high-field, high-resolution susceptibility-weighted magnetic resonance imaging at 3 Tesla: comparison with standard (1.5 T) magnetic resonance imaging and correlation with histopathological findings – preliminary results. Invest Radiol. 2007;42(6):346–351. doi: 10.1097/01.rli.0000262744.85397.fc
  34. Flores BC, Whittemore AR, Samson DS, Barnett SL. The utility of preoperative diffusion tensor imaging in the surgical management of brainstem cavernous malformations. J Neurosurg. 2015;122(3):653–662. doi: 10.3171/2014.11.JNS13680

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. CT sections of the brain in the axial view performed before (a) and after contrast agent administration (b). The images show a hyperdensive focus in the right frontal lobe, without clear contours, and without contrast uptake.

Download (85KB)
3. Fig. 2. MR images of the brain in the axial view in the T1–WI (a, c), T2–WI (b), and T2*GRE (d) modes demonstrate a more detailed visualization of the CM structure (the same case as in Fig. 1). The images show a focal lesion of a characteristic cellular structure with a hypointensive peripheral signal on T2–WI. The T2*GRE sequence emphasizes the florid effect of hemosiderin.

Download (148KB)
4. Fig. 3. T2*GRE image in the axial view shows a large cavernous angioma in the left occipital lobe. Despite the significant size of the lesion, no perifocal edema and mass effect on the surrounding structures are found.

Download (66KB)
5. Fig. 4. MR images of the brain in the axial view in the T2*GRE (A) and SWI (B) modes. SWI images can reveal additional CM lesions not visible in the T2*GRE.

Download (115KB)

Copyright (c) 2021 Girya E.N., Sinitsyn V.E., Tokarev A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies