根据结构性磁共振成像数据对慢性意识障碍进行鉴别诊断

封面图片

如何引用文章

详细

论证。即使对于经验丰富的临床医生来说,慢性意识障碍的鉴别诊断仍然是一项艰巨的任务。在这方面,开发评估这些患者的工具性方法具有重要意义,它能为诊断提供更多信息。

目的是评估之前提出的基于结构性磁共振成像的慢性意识障碍鉴别诊断变化评估量表(DOC-MRIDS)在更多患者样本中的专家间一致性和实际应用的可行性。

材料和方法。研究对象为 60 名经临床诊断为慢性意识障碍的躯体稳定患者:32 名处于植物人状态,28 名处于微意识状态。临床评估采用昏迷恢复量表修订版(CRS-R)进行。所有患者均使用 3.0 T Siemens 断层扫描仪进行了 T2 和 T1 序列结构性磁共振成像。在根据 DOC-MRIDS 量表评估结构变化时,考虑了以下特征的存在和严重程度:弥漫性皮质萎缩、脑室扩大、脑沟扩张、白质疏松、脑干和/或丘脑变性、胼胝体变性和胼胝体局灶性病变;并计算了总分。磁共振成像数据由三位神经放射学专家进行分析,并评估专家间的一致性(Krippendorff 的 α系数)。

结果。DOC-MRIDS量表评分的专家间一致性很高:α=0.806(95%置信区间为0.757-0.849)。与处于微意识状态的患者相比,植物人患者的 DOC-MRIDS 磁共振成像量表得分更高(P<0.005)。CRS-R和DOC-MRIDS评分之间呈负相关(P=-0.457,P<0.0001),临床量表的各个领域与磁共振成像特征之间呈负相关。

结论。使用 DOC-MRIDS 量表对慢性意识障碍患者的结构变化进行评估,有助于确定意识障碍的可能临床类型,具有足够的特异性、灵敏度和专家间的一致性,可在临床实践中作为临床数据的补充鉴别诊断方法。

作者简介

Anastasia N. Sergeeva

Research Center of Neurology

编辑信件的主要联系方式.
Email: sergeeva@neurology.ru
ORCID iD: 0000-0002-2481-4565
SPIN 代码: 6761-8250

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Sofya N. Morozova

Research Center of Neurology

Email: kulikovasn@gmail.com
ORCID iD: 0000-0002-9093-344X
SPIN 代码: 2434-7827

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Dmitrii V. Sergeev

Research Center of Neurology

Email: dmsergeev@yandex.ru
ORCID iD: 0000-0002-9130-1292
SPIN 代码: 8282-3920

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Elena I. Kremneva

Research Center of Neurology

Email: moomin10j@mail.ru
ORCID iD: 0000-0001-9396-6063
SPIN 代码: 8799-8092

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Alexey A. Zimin

Research Center of Neurology

Email: leha-zimin@inbox.ru
ORCID iD: 0000-0002-9226-2870
SPIN 代码: 9525-1805
俄罗斯联邦, Moscow

Lyudmila A. Legostaeva

Research Center of Neurology

Email: milalegostaeva@gmail.com

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Elizaveta G. Iazeva

LLC “Three sisters” Rehabilitation center

Email: lizaveta.mochalova@gmail.com
ORCID iD: 0000-0003-0382-7719
SPIN 代码: 4895-3900

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Moscow

Marina V. Krotenkova

Research Center of Neurology

Email: krotenkova_mrt@mail.ru
ORCID iD: 0000-0003-3820-4554
SPIN 代码: 9663-8828

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Moscow

Yulia V. Ryabinkina

Research Center of Neurology

Email: ryabinkina11@mail.ru
ORCID iD: 0000-0001-8576-9983
SPIN 代码: 5044-2701

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Moscow

Natalya A. Suponeva

Research Center of Neurology

Email: nasu2709@mail.ru
ORCID iD: 0000-0003-3956-6362
SPIN 代码: 3223-6006

MD, Dr. Sci. (Medicine), corresponding member of the Russian Academy of Sciences, Professor

俄罗斯联邦, Moscow

Michael A. Piradov

Research Center of Neurology

Email: mpi711@gmail.com
ORCID iD: 0000-0002-6338-0392
SPIN 代码: 2860-1689

MD, Dr. Sci. (Medicine), academician member of the Russian Academy of Sciences, Professor

俄罗斯联邦, Moscow

参考

  1. Koch C, Massimini M, Boly M, Tononi G. Neural correlates of consciousness: progress and problems. Nat Rev Neurosci. 2016;17(5):307–321. doi: 10.1038/nrn.2016.22
  2. Monti MM, Laureys S, Owen AM. The vegetative state. BMJ. 2010;341:376–385. doi: 10.1136/bmj.c3765
  3. Giacino JT, Ashwal S, Childs N, et al. The minimally conscious state: Definition and diagnostic criteria. Neurology. 2002;58(3):349–353. doi: 10.1212/wnl.58.3.349
  4. Belkin AA, Aleksandrova EV, Akhutina TV, et al. Chronic Disorders of Consciousness: guidelines of the All-Russian public organization “Federation of Anesthesiologists and Reanimatologists”. Annals of critical care. 2023;(3):7–42. doi: 10.21320/1818-474X-2023-3-7-42
  5. Giacino JT. The vegetative and minimally conscious states: Consensus-based criteria for establishing diagnosis and prognosis. Neurorehabilitation. 2004;19(4):293–298. doi: 10.3233/NRE-2004-19405
  6. Seel RT, Sherer M, et al. Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch Phys Med Rehabil. 2010;91(12):1795–1813. doi: 10.1016/j.apmr.2010.07.218
  7. Schnakers C, Vanhaudenhuyse A, Giacino J, et al. Diagnostic accuracy of the vegetative and minimally conscious state: Clinical consensus versus standardized neurobehavioral assessment. BMC Neurol. 2009;(9):35–40. doi: 10.1186/1471-2377-9-35
  8. Stender J, Gosseries O, Bruno M, et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: A clinical validation study. Lancet. 2014;384(9942):514–522. doi: 10.1016/S0140-6736(14)60042-8
  9. Monti M, Vanhaudenhuyse A, Coleman M, et al. Willful modulation of brain activity in disorders of consciousness. N. Engl. J. Med. 2010;362(7):579–589. doi: 10.1056/NEJMoa0905370
  10. Crone J, Bio B, Vespa P, et. al. Restoration of thalamo-cortical connectivity after brain injury: Recovery of consciousness, complex behavior, or passage of time. J. Neurosci. Res. 2018;96(4):671–687. doi: 10.1002/jnr.24115
  11. Demertzi A, Antonopoulos G, Heine L, et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain. 2015;138(9):2619–2631. doi: 10.1093/brain/awv169
  12. Lutkenhoff E, Chiang J, Tshibanda L, et al. Thalamic and extrathalamic mechanisms of consciousness after severe brain injury. Ann. Neurol. 2015;78(1):68–76. doi: 10.1002/ana.24423
  13. Guldenmund P, Soddu A, Baquero K, et al. Structural brain injury in patients with disorders of consciousness: A voxel-based morphometry study. Brain Inj. 2016;30(3):343–352. doi: 10.3109/02699052.2015.1118765
  14. Annen J, Frasso G, Crone J, et al. Regional brain volumetry and brain function in severely brain-injured patients. Ann. Neurol. 2018;83(4):842–853. doi: 10.1002/ana.25214
  15. Morozova SN, Kremneva EI, Sergeev DV, et al. Conventional Structural Magnetic Resonance Imaging in Differentiating Chronic Disorders of Consciousness. Brain Sci. 2018;8(8):144–155. doi: 10.3390/brainsci8080144
  16. Legostaeva LA, Mochalova EG, Suponeva NA, et al. Difficulties in evaluation of chronic disorders of consciousness: approaches to clinical assessment and instrumental studies. Russian Journal of Anesthesiology and Reanimatology. 2017;62(6):449–456. EDN: YPLNJY doi: 10.18821/0201-7563-2017-62-6-449-456
  17. Solovyeva PI, Sinkin МV, Talypov АE, et al. Clinical assessment of patients with chronic disorders of consciousness by different medical specialists. Annals of Clinical and Experimental Neurology. 2022;16(2):44–49. doi: 10.54101/ACEN.2022.2.5
  18. Medina JP, Nigri A, Stanziano M, et al. Resting-State fMRI in Chronic Patients with Disorders of Consciousness: The Role of Lower-Order Networks for Clinical Assessment. Brain Sci. 2022;12(3):355–374. doi: 10.3390/brainsci12030355
  19. Rohaut B, Doyle KW, Reynolds AS, et al. Deep structural brain lesions associated with consciousness impairment early after hemorrhagic stroke. Sci Rep. 2019;9(1):4174. doi: 10.1038/s41598-019-41042-2
  20. Alnagger N, Cardone P, Martial C, et al. The current and future contribution of neuroimaging to the understanding of disorders of consciousness. Presse Med. 2023;52(2):104163. doi: 10.1016/j.lpm.2022.104163
  21. Bakulin IS, Kremneva EI, Kuznetsov AV, et al. Chronic disorders of consciousness. Piradov MA, editor. Moscow: Hot line — Telecom; 2020.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. DOC-MRIDS score: a–d — on the example of a healthy volunteer; e–h — on the example of a patient with CNS. The indicated distances: a–b — cortex thickness; b–c — sulcus width; h–i — thickness of the central part of the corpus callosum; distances d–e and f–g were used to calculate the Evans index. Areas highlighted in blue: a — unchanged thalamus; c — brainstem; e — degeneration of thalamus; g — degeneration of brainstem. Lines: e— red dotted lines indicate the prevalence of leukoaraiosis; h — solid blue line marks hypointense foci in the corpus callosum.

下载 (299KB)
3. Fig. 2. Negative correlation between the CRS-R and DOC-MRIDS scores (ρ=–0.457, p<0.0001). Red dots – vegetative state group; blue dots – minimally conscious state group.

下载 (97KB)
4. 图 3. 区分植物状态和微意识状态患者的 ROC 曲线。AUC=0.71;P=0.005。

下载 (80KB)

版权所有 © Eco-Vector, 2024

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).