Three-dimensional reconstruction of the pelvic bones on MRI scans

封面

如何引用文章

全文:

详细

BACKGROUND: Pelvimetry is an important part of the obstetric examination for predicting a mismatch between the size of the fetus and the mother’s pelvis, which leads to difficulty or impossibility of vaginal delivery. Contracted pelvis is one of the main causes of maternal birth trauma and perinatal morbidity and mortality.

AIM: To create a computer vision model for automatic segmentation and three-dimensional (3D) reconstruction of the pelvic bones.

METHODS: A 3D U-Net-based neural network was used and trained on T2 weighted images in frontal projection (repetition time, 7500; echo time, 130; slice thickness, 4mm; field-of-view, 40×39; matrix, 256×256). The sample size covered 49 patients. The training and test samples included 42 and 7 examinations, respectively. The segmentation of areas of interest was done manually and verified by a specialist. The sample size was justified by achieving representativeness of the data for obtaining a qualitative model (according to the Sorensen–Dice coefficient).

RESULTS: 3D reconstructions of the pelvic bones were obtained. The average Sorensen-Dice coefficient on the accuracy of pelvic bone segmentation in the test sample was 0.86. The result justified the use of a 3D U-Net-based neural network as a tool capable of perceiving a 3D structure of images and conducting qualitative segmentation. The results allow further work on automating the determination of key points at reconstructions.

CONCLUSIONS: A computer vision model for automatic segmentation of the pelvic bones to obtain 3D reconstruction of images was created. This enabled the next stage of the study, i.e. the development of a model for determining the key points in the images and the distances between the points.

作者简介

Egor Ikryannikov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

编辑信件的主要联系方式.
Email: ikriannikove01@gmail.com
ORCID iD: 0000-0002-1780-6903
俄罗斯联邦, Moscow

参考

  1. Ternovoi SK, Volobuev AI, Kurinov SB, Panov VO, Shariya MA. Magnitno-rezonansnaya pel’viometriya. Meditsinskaya vizualizatsiya. 2001;(4):6–12. (In Russ).
  2. Woo B, Lee M. Comparison of tissue segmentation performance between 2D U-Net and 3D U-Net on brain MR Images. In: 2021 International Conference on Electronics, Information, and Communication (ICEIC). IEEE; 2021. P. 1–4.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».