Methods of medical visualization and thermal ablation as a new approach to treatment of hyperparathyroidism

Cover Image

Cite item

Abstract

The pathologies of parathyroid glands are widespread among endocrine system diseases, excluding diabetes and thyroid pathology. There are only two methods that are used to treat hyperparathyroidisms, such as surgery and conservative therapy. However, transracial thermal destruction methods (ablation) have recently appeared in clinical practice. The methods have good precision and connect with physical phenomena, such as interaction laser, radiofrequency, microwave, and HIFU irradiation with bio substance. The review is dedicated to critically analyze the modern methods for local thermal destruction of the hyper-functioning parathyroid glands. The review includes data from randomized clinical trials from 2012 to 2021. The studies were from Google Scholar and Pubmed with a total number of 1,938 patients (laser ablation ― 216 patients, radiofrequency ablation ― 225, microwave ablation ― 1467, high-density ultrasound ablation ― 30 patients). Recommendations methods of thermal destruction application were obtained during the review. Furthermore, we have designed some algorithms for hyperparathyroidism treatment. Moreover, thermal destruction methods were observed. There are four modern methods of thermal destruction which have been analyzed like alternatives to surgery. Each of them has advantages and disadvantages, its profile of safety and effectiveness. After processing information from a proven database, the most popular among specialists is methods of microwave ablation. However, laser ablation is more effective than other ways.

About the authors

Pavel O. Rumiantsev

International Medical Center “SOGAZ”

Email: pavelrum@gmail.com
ORCID iD: 0000-0002-7721-634X
SPIN-code: 7085-7976

MD, Dr. Sci. (Med.)

Russian Federation, 8 Malaya Konyushennaya str., Saint Petersburg, 191186

Aleksandr A. Bubnov

Endocrinology Research Centre; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: bubnov96@mail.ru
ORCID iD: 0000-0002-5877-6982
SPIN-code: 9380-1293

graduate student

Russian Federation, Moscow; Moscow

Mikhail V. Degtyarev

Endocrinology Research Centre

Email: germed@mail.ru
ORCID iD: 0000-0001-5652-2607

MD, radiologist

Russian Federation, Moscow

Konstantin Y. Slushchuk

Endocrinology Research Centre

Email: slashuk911@gmail.com
ORCID iD: 0000-0002-3220-2438

MD, endocrinologist, researcher

Russian Federation, Moscow

Svetlana M. Zakharova

Endocrinology Research Centre

Email: smzakharova@mail.ru
ORCID iD: 0000-0001-6059-2827
SPIN-code: 9441-4035

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Dmitriy Y. Agibalov

Endocrinology Research Centre

Email: agibalovd@bk.ru
ORCID iD: 0000-0003-2995-7140

doctor

Russian Federation, Moscow

Viktor Y. Timoshenko

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); Lomonosov Moscow State University

Author for correspondence.
Email: vtimoshe@gmail.com
ORCID iD: 0000-0003-3234-1427
SPIN-code: 7536-2368

Dr. Sci. (Phys-Math), Professor

Russian Federation, Moscow; Moscow

References

  1. Fraser WD. Hyperparathyroidism. Lancet. 2009;374(9684): 145–158. doi: 10.1016/S0140-6736(09)60507-9
  2. Vadiveloo T, Donnan PT, Leese GP. A population-based study of the epidemiology of chronic hypoparathyroidism. J Bone Miner Res. 2018;33(3):478–485. doi: 10.1002/jbmr.3329
  3. Yanevskaya LG, Karonova TL, Sleptsov IV, et al. Primary hyperparathyroidism: clinical forms and their features. Retrospective study. Clinical and Experimental Thyroidology. 2019;15(1):19–29. (In Russ). doi: 10.14341/ket10213
  4. Mokrysheva NG, Eremkina AK, Mirnaya SS, et al. Challenges in differential diagnosis between primary and secondary forms of hyperparathyroidism. Obesity and Metabolism. 2017;14(3):48–53. (In Russ). doi: 10.14341/omet2017348-53
  5. Smorshchok VN, Kuznetsov NS, Artemova AM, et al. Surgical treatment of patients with secondary hyperparathyroidism in chronic renal failure. Problems of Endocrinology. 2003;49(6):36–41. (In Russ). doi: 10.14341/probl11761
  6. Slashchuk KY, Degtyarev MV, Rumyantsev PO, et al. Imaging methods of the parathyroid glands in primary hyperparathyroidism. Literature review. Endocrine Surgery. 2019;13(4):153–174. (In Russ). doi: 10.14341/serg12241
  7. Broos WM, van der Zant FM, Knol JJ, Wondergem M. Choline PET/CT in parathyroid imaging: a systematic review. Nucl Med Commun. 2019;40(2):96–105. doi: 10.1097/MNM.0000000000000952
  8. Yu N, Leese GP, Smith D, Donnan PT. The natural history of treated and untreated primary hyperparathyroidism: the parathyroid epidemiology and audit research study. QJM. 2011;104(6):513–521. doi: 10.1093/qjmed/hcq261
  9. Ishii H, Stechman MJ, Watkinson JC, et al. A review of parathyroid surgery for primary hyperparathyroidism from the United Kingdom Registry of Endocrine and Thyroid Surgery (UKRETS). World J Surg. 2021;45:782–789. doi: 10.1007/s00268-020-05885-5
  10. Kim MS, Kim GH, Lee CH, et al. Surgical outcomes of subtotal parathyroidectomy for renal hyperparathyroidism. Clin Exp Otorhinolaryngol. 2020;13(2):173–178. doi: 10.21053/ceo.2019.01340
  11. LeBlanc RA, Isaac A, Abele J, et al. Validation of a novel method for localization of parathyroid adenomas using SPECT/CT. J Otolaryngol Head Neck Surg. 2018;47(1):65. doi: 10.1186/s40463-018-0307-6
  12. Zhao S, Guo X, Taniguchi M, et al. Detection of mediastinal lymph node metastases using indocyanine green (ICG) fluorescence imaging in an orthotopic implantation model. Anticancer Res. 2020;40(4):1875–1882. doi: 10.21873/anticanres.14141
  13. Kose E, Rudin AV, Kahramangil B, et al. Autofluorescence imaging of parathyroid glands: An assessment of potential indications. Surgery. 2020;167(1):173–179. doi: 10.1016/j.surg.2019.04.072
  14. Wu B, Haigh PI, Hwang R, et al. Underutilization of parathyroidectomy in elderly patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 2010;95(9):4324–4330. doi: 10.1210/jc.2009-2819
  15. Kovatcheva RD, Vlahov JD, Stoinov JI, et al. High-intensity focused ultrasound (HIFU) treatment in uraemic secondary hyperparathyroidism. Nephrol Dial Transplant. 2012;27(1):76–80. doi: 10.1093/ndt/gfr590
  16. Korkusuz H, Nimsdorf F, Happel C, et al. Percutaneous microwave ablation of benign thyroid nodules. Functional imaging in comparison to nodular volume reduction at a 3-month follow-up. Nuklearmedizin. 2015;54(1):13–19. doi: 10.3413/Nukmed-0678-14-06
  17. Zeng Z, Peng CZ, Liu JB, et al. Efficacy of ultrasound-guided radiofrequency ablation of parathyroid hyperplasia: single session vs. two-session for effect on hypocalcemia. Sci Rep. 2020;10(1):6206. doi: 10.1038/s41598-020-63299-8
  18. Casara D, Rubello D, Piotto A, Pelizzo MR. 99mTc-MIBI radio-guided minimally invasive parathyroid surgery planned on the basis of a preoperative combined 99mTc-pertechnetate/99mTc-MIBI and ultrasound imaging protocol. Eur J Nucl Med. 2000;27(9):1300–1304. doi: 10.1007/s002590000297
  19. Huang Z, Lou C. 99mTcO4-/99mTc-MIBI dual-tracer scintigraphy for preoperative localization of parathyroid adenomas. J Int Med Res. 2019;47(2):836–845. doi: 10.1177/0300060518813742
  20. Zhang R, Zhang Z, Huang P, et al. Diagnostic performance of ultrasonography, dual-phase 99mTc-MIBI scintigraphy, early and delayed 99mTc-MIBI SPECT/CT in preoperative parathyroid gland localization in secondary hyperparathyroidism. BMC Med Imaging. 2020;20(1):91. doi: 10.1186/s12880-020-00490-3
  21. Treglia G, Sadeghi R, Schalin-Jäntti C, et al. Detection rate of 99m Tc-MIBI single photon emission computed tomography (SPECT)/CT in preoperative planning for patients with primary hyperparathyroidism: A meta-analysis. Head Neck. 2016;38(Suppl 1):2159–2172. doi: 10.1002/hed.24027
  22. Huber GF, Hüllner M, Schmid C, et al. Benefit of 18F-fluorocholine PET imaging in parathyroid surgery. Eur Radiol. 2018;28(6):2700–2707. doi: 10.1007/s00330-017-5190-4
  23. Pacella CM, Mauri G. History of laser ablation. image-guided laser ablation. Springer, Cham; 2020. doi: 10.1007/978-3-030-21748-8_1
  24. Bown SG. Phototherapy in tumors. World J Surg. 1983;7(6):700–709. doi: 10.1007/BF01655209
  25. Appelbaum L, Goldberg SN, Ierace T, Mauri G. US-guided laser treatment of parathyroid adenomas. Int J Hyperthermia. 2020;37(1):366–372. doi: 10.1080/02656736.2020.1750712
  26. Rhim H, Goldberg SN, Dodd GD, et al. Essential techniques for successful radio-frequency thermal ablation of malignant hepatic tumors. Radiographics. 2001;21:S17–S35. doi: 10.1148/radiographics.21.suppl_1.g01oc11s17
  27. McGahan JP, Dodd G. Radiofrequency ablation of the liver. American Journal of Roentgenology. 2001;176(1): 3–16 doi: 10.2214 / ajr.176.1.1760003
  28. Hong K, Georgiades C. Radiofrequency ablation: mechanism of action and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):179–186. doi: 10.1016/j.jvir.2010.04.008
  29. Zhang M, Tufano RP, Russell JO. Ultrasound-Guided radiofrequency ablation versus surgery for low-risk papillary thyroid microcarcinoma: results of over 5 years’ follow-up. Thyroid. 2020;30(3):408–417. doi: 10.1089/thy.2019.0147
  30. Schullian P, Johnston EW, Putzer D, et al. Safety and efficacy of stereotactic radiofrequency ablation for very large (≥8 cm) primary and metastatic liver tumors. Sci Rep. 2020;10(1):1618. doi: 10.1038/s41598-020-58383-y
  31. Marshall HR, Shakeri S, Hosseiny M, et al. Long-term survival after percutaneous radiofrequency ablation of pathologically proven renal cell carcinoma in 100 patients. J Vasc Interv Radiol. 2020;31(1):15–24. doi: 10.1016/j.jvir.2019.09.011
  32. Laird AM, Libutti SK. Minimally invasive parathyroidectomy versus bilateral neck exploration for primary hyperparathyroidism. Surg Oncol Clin N Am. 2016;25(1):103–118. doi: 10.1016/j.soc.2015.08.012
  33. Ha EJ, Baek JH, Baek SM. Minimally invasive treatment for benign parathyroid lesions: treatment efficacy and safety based on nodule characteristics. Korean J Radiol. 2020;21(12):1383–1392. doi: 10.3348/kjr.2020.0037
  34. Sidorov DV, Stepanov SO, Grishin NA, et al. Microwave ablation in the treatment of liver malignancies. Oncology. Journal named after P.A. Herzen. 2013;1(2):27–31. (In Russ).
  35. Lubner MG, Brace CL, Hinshaw JL, Lee FT. Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol. 2010;21(8):192–203 doi: 10.1016/j.jvir.2010.04.007
  36. Wei Y, Peng L, Li Y, et al. Clinical study on safety and efficacy of microwave ablation for primary hyperparathyroidism. Korean J Radiol. 2020;21(5):572–581. doi: 10.3348/kjr.2019.0593
  37. Schlosser K, Bartsch DK, Diener MK, et al. Total parathyroidectomy with routine thymectomy and autotransplantation versus total parathyroidectomy alone for secondary hyperparathyroidism: results of a nonconfirmatory multicenter prospective randomized controlled pilot trial. Annals of Surgery. 2016;264(5):745–753. doi: 10.1097/SLA.0000000000001875
  38. Zhuo L, Zhang L, Peng LL, et al. Microwave ablation of hyperplastic parathyroid glands is a treatment option for end-stage renal disease patients ineligible for surgical resection. Int J Hyperthermia. 2019;36(1):29–35. doi: 10.1080/02656736.2018.1528392
  39. Copelan A, Hartman J, Chehab M, Venkatesan AM. High-Intensity focused ultrasound: current status for image-guided therapy. Semin Intervent Radiol. 2015;32(4):398–415. doi: 10.1055/s-0035-1564793
  40. Suleimanov EA, Filonenko EV, Moskvicheva LI, et al. The possibility of hifu therapy at the present stage. Research and Practical Medicine Journal. 2016;3(3):76–82. (In Russ). doi: 10.17709/2409-2231-2016-3-3-8
  41. Limani K, Aoun F, Holz S, et al. Single high intensity focused ultrasound session as a whole gland primary treatment for clinically localized prostate cancer: 10-year outcomes. Prostate Cancer. 2014;2014:186782. doi: 10.1155/2014/186782
  42. Chung SR, Baek JH, Suh CH, et al. Efficacy and safety of high-intensity focused ultrasound (HIFU) for treating benign thyroid nodules: a systematic review and meta-analysis. Acta Radiologica. 2020;61(12):1636–1643. doi: 10.1177/0284185120909339
  43. Ploussard G. Re: Salvage high-intensity focused ultrasound (HIFU) for locally recurrent prostate cancer after failed radiation therapy: multi-institutional analysis of 418 patients. Eur Urol. 2018;73(1):140–141. doi: 10.1016/j.eururo.2017.09.031
  44. Tsamatropoulos P, Valcavi R. HIFU and RFA Ablation for thyroid and parathyroid disease. Advanced thyroid and parathyroid ultrasound. Springer, Cham; 2017. doi: 10.1007/978-3-319-44100-9_36
  45. Kovatcheva R, Vlahov J, Stoinov J, et al. US-guided high-intensity focused ultrasound as a promising non-invasive method for treatment of primary hyperparathyroidism. Eur Radiol. 2014;24(9):2052–2058. doi: 10.1007/s00330-014-3252-4
  46. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):179–184. doi: 10.1159/000339789
  47. Daugirdas JT, Depner TA, Inrig J, et al. KDOQI clinical practice guideline for hemodialysis adequacy: 2015 update. Am J Kidney Dis. 2015;66(5):884–930. doi: 10.1053/j.ajkd.2015.07.015.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 2. Ultrasound imaging of hyperfunctioning parathyroid glands in hyperparathyroidism: a - primary hyperparathyroidism; b - secondary hyperparathyroidism.

Download (533KB)
3. Fig. 3. Two-isotope scintigraphy: a - scintigraphy with 99mTc-MIBI; b - scintigraphy with 99mTc-TcO4.

Download (520KB)
4. Fig. 4.

Download (484KB)
5. Fig. 6. Images obtained with multichannel gamma probes Sentinella-102 (a – c) and CrystalCam (d).

Download (604KB)
6. Fig. 7. Laser ablation in primary hyperparathyroidism: a - parathyroid adenoma; b - the presence of two laser fibers and the area of the parathyroid gland after ablation.

Download (553KB)
7. Fig. 8.

Download (550KB)
8. Fig. 1. Dynamics of publications on the use of alternative methods for periothyroid gland destruction.

Download (156KB)
9. Fig. 5. Hyperparathyroidism diagnosis algorithm.

Download (298KB)
10. Fig. 8. Hyperparathyroidism treatment algorithm.

Download (192KB)
11. Fig. 9. Summary of the advantages (green) and disadvantages (red) of the methods for thermal destruction of the parathyroid glands.

Download (352KB)

Copyright (c) 2021 Rumiantsev P.O., Bubnov A.A., Degtyarev M.V., Slushchuk K.Y., Zakharova S.M., Agibalov D.Y., Timoshenko V.Y.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies