Texture analysis and radiomics in the diagnosis of multiple sclerosis: a review
- Authors: Khvastochenko G.I.1, Bryukhov V.V.1, Krotenkova M.V.1
-
Affiliations:
- Russian Center of Neurology and Neurosciences
- Issue: Vol 6, No 4 (2025)
- Pages: 618-629
- Section: Reviews
- URL: https://journals.rcsi.science/DD/article/view/373800
- DOI: https://doi.org/10.17816/DD656073
- EDN: https://elibrary.ru/TNETWF
- ID: 373800
Cite item
Full Text
Abstract
The clinical signs of multifocal brain lesions, including multiple sclerosis, are highly variable and largely depend on lesion site and size. Differential diagnosis of such changes may be challenging in certain cases. Vascular, inflammatory, infectious, and hereditary diseases may demonstrate similar magnetic resonance imaging patterns, whereas their assessment is limited by technical factors and human visual perception. In recent years, novel approaches such as texture analysis and radiomics have been increasingly integrated into radiological research, facilitating the acquisition of imaging details that would otherwise remain undetectable by the naked eye. These methods include first-order statistical analysis of signal intensities, gray-level co-occurrence and gray-level run-length matrices, fractal and wavelet analyses, and the development of predictive models using machine learning algorithms. Radiomics was initially developed for oncologic imaging; however, now its capabilities are also applied in the diagnosis of other conditions.
This article presents a review of the current scientific data on the use of texture analysis and radiomics in the differential diagnosis of demyelinating diseases, with a particular focus on multiple sclerosis. Data search was conducted in PubMed and eLibrary using the keywords “radiomics,” “digital image texture analysis,” “multiple sclerosis,” “радиомика” (radiomics), “текстурный анализ” (texture analysis), and “рассеянный склероз” (multiple sclerosis). The search period covered the last 9 years. Only original studies (n = 17) investigating the use of radiomics and digital image texture analysis in the diagnosis of demyelinating diseases were included in this review.
Texture analysis and radiomics represent promising adjunctive tools for the evaluation of multifocal brain lesions in demyelinating diseases. However, their implementation in clinical practice requires the development of optimized feature extraction algorithms, identification of the most informative texture parameters, and standardization and validation of the resulting imaging biomarkers.
Full Text
##article.viewOnOriginalSite##About the authors
Gleb I. Khvastochenko
Russian Center of Neurology and Neurosciences
Author for correspondence.
Email: hvastochenko.g.i@neurology.ru
ORCID iD: 0009-0003-4628-3069
SPIN-code: 8988-6959
Russian Federation, Moscow
Vasiliy V. Bryukhov
Russian Center of Neurology and Neurosciences
Email: abdomen@rambler.ru
ORCID iD: 0000-0002-1645-6526
SPIN-code: 6299-3604
MD, Cand. Sci. (Medicine)
Russian Federation, MoscowMarina V. Krotenkova
Russian Center of Neurology and Neurosciences
Email: krotenkova_mrt@mail.ru
ORCID iD: 0000-0003-3820-4554
SPIN-code: 9663-8828
MD, Dr. Sci. (Medicine)
Russian Federation, MoscowReferences
- Bryukhov VV, Kulikova SN, Korotenkova MV. State-of-the-art neuroimaging techniques in pathogenesis of multiple sclerosis. Annals of Clinical and Experimental Neurology. 2013;7(3):47–54. EDN: RCNGNX
- Zakharova MN, Askarova LSh, Bakulin IS, et al. Modern principles of multiple sclerosis therapy. In: Diseases of the Nervous System: Mechanisms of Development, Diagnosis and Treatment. Moscow: Buki-Vedi; 2017. P. 563–583. (In Russ.) EDN: DWXVSD
- Walton C, King R, Rechtman L, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Multiple Sclerosis Journal. 2020;26(14):1816–1821. doi: 10.1177/1352458520970841 EDN: KZKBAV
- Boynova IV, Samarina DV, Katorova AV, Tokareva NG. Clinical and epidemiological features of multiple sclerosis in the Russian Federation. Modern Problems of Science and Education. 2022;(5):139. doi: 10.17513/spno.32006 EDN: RXKCDE
- Eliseeva DD, Zakharova MN. Mechanisms of neurodegeneration in multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(7-2):5–13. doi: 10.17116/jnevro20221220725 EDN: IEDSCQ
- Ye H, Shaghaghi M, Chen Q, et al. In vivo proton exchange rate (kex) MRI for the characterization of multiple sclerosis lesions in patients. Journal of Magnetic Resonance Imaging. 2020;53(2):408–415. doi: 10.1002/jmri.27363 EDN: DJQYRX
- Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nature Reviews Immunology. 2015;15(9):545–558. doi: 10.1038/nri3871
- Giovannoni G, Butzkueven H, Dhib-Jalbut S, et al. Brain health: time matters in multiple sclerosis. Multiple Sclerosis and Related Disorders. 2016;9:S5–S48. doi: 10.1016/j.msard.2016.07.003 EDN: YWFZHV
- Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 2018;17(2):162–173. doi: 10.1016/S1474-4422(17)30470-2 EDN: VCVLDN
- Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Current Opinion in Neurology. 2002;15(3):239–245. doi: 10.1097/00019052-200206000-00003
- Filippi M. Magnetic resonance techniques in multiple sclerosis. Archives of Neurology. 2011;68(12):1514. doi: 10.1001/archneurol.2011.914
- Tavazzi E, Zivadinov R, Dwyer MG, et al. MRI biomarkers of disease progression and conversion to secondary-progressive multiple sclerosis. Expert Review of Neurotherapeutics. 2020;20(8):821–834. doi: 10.1080/14737175.2020.1757435 EDN: NQVWRM
- Danchenko IY, Kulesh AA, Drobakha VE, et al. CADASIL syndrome: differential diagnosis with multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(10):128–136. doi: 10.17116/jnevro201911910128 EDN: XRLSFO
- Krotenkova IA, Bryukhov VV, Konovalov RN, et al. Magnetic resonance imaging in the differential diagnosis of multiple sclerosis and other demyelinating diseases. Journal of Radiology and Nuclear Medicine. 2019;100(4):229–236. doi: 10.20862/0042-4676-2019-100-4-229-236 EDN: SKMDAN
- Savintseva ZI, Ilves AG, Lebedev VM, et al. Difficulties in the differential diagnosis of multiple sclerosis and Susak syndrome. Diagnostic Radiology and Radiotherapy. 2021;12(1):24–29. doi: 10.22328/2079-5343-2020-12-1-24-29 EDN: AXHHKG
- Litvin AA, Burkin DA, Kropinov AA, Paramzin FN. Radiomics and digital image texture analysis in oncology (review). Modern Technologies in Medicine. 2021;13(2):97–106. doi: 10.17691/stm2021.13.2.11 EDN: AITKVR
- Kimpe T, Tuytschaever T. Increasing the number of gray shades in medical display systems—how much is enough? Journal of Digital Imaging. 2006;20(4):422–432. doi: 10.1007/s10278-006-1052-3 EDN: GSXTLG
- Alic L, Niessen WJ, Veenland JF. Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. PLoS ONE. 2014;9(10):e110300. doi: 10.1371/journal.pone.0110300
- Nioche C, Orlhac F, Boughdad S, et al. LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Research. 2018;78(16):4786–4789. doi: 10.1158/0008-5472.CAN-18-0125
- Choi JY. Radiomics and deep learning in clinical imaging: what should we do? Nuclear Medicine and Molecular Imaging. 2018;52(2):89–90. doi: 10.1007/s13139-018-0514-0 EDN: HHOKSZ
- Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–577. doi: 10.1148/radiol.2015151169
- Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. European Journal of Cancer. 2012;48(4):441–446. doi: 10.1016/j.ejca.2011.11.036
- Zhang M, Wang Y, Lv M, et al. Trends and hotspots in global radiomics research: a bibliometric analysis. Technology in Cancer Research & Treatment. 2024;23. doi: 10.1177/15330338241235769 EDN: ZCAHJC
- Liu Y, Dong D, Zhang L, et al. Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder. European Radiology. 2019;29(9):4670–4677. doi: 10.1007/s00330-019-06026-w EDN: HUUABH
- Kocak B, Baessler B, Cuocolo R, et al. Trends and statistics of artificial intelligence and radiomics research in Radiology, Nuclear Medicine, and Medical Imaging: bibliometric analysis. European Radiology. 2023;33(11):7542–7555. doi: 10.1007/s00330-023-09772-0 EDN: DHATXP
- Scapicchio C, Gabelloni M, Barucci A, et al. A deep look into radiomics. La Radiologia Medica. 2021;126(10):1296–1311. doi: 10.1007/s11547-021-01389-x EDN: CFTFXK
- Morozov SP, Chernyaeva GN, Bazhin AV, et al. Validation of diagnostic accuracy of anartificial intelligence algorithm for detecting multiple sclerosis in a city polyclinic setting. Diagnostic Radiology and Radiotherapy. 2020;11(2):58–65. doi: 10.22328/2079-5343-2020-11-2-58-65 EDN: BZSYPH
- Luo X, Li H, Xia W, et al. Joint radiomics and spatial distribution model for MRI-based discrimination of multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin-oligodendrocyte-glycoprotein-IgG-associated disorder. European Radiology. 2023;34(7):4364–4375. doi: 10.1007/s00330-023-10529-y
- Nioche C, Orlhac C, Buvat I. Texture—user guide: Local Image Features Extraction. 2019. Avaliable from: https://www.lifexsoft.org/images/UserGuide/TextureUserGuide.pdf
- Weber CE, Wittayer M, Kraemer M, et al. Quantitative MRI texture analysis in chronic active multiple sclerosis lesions. Magnetic Resonance Imaging. 2021;79:97–102. doi: 10.1016/j.mri.2021.03.016 EDN: TIKTJC
- Shi Z, Ma Y, Ding S, et al. Radiomics derived from T2-FLAIR: the value of 2- and 3-classification tasks for different lesions in multiple sclerosis. Quantitative Imaging in Medicine and Surgery. 2024;14(2):2049–2059. doi: 10.21037/qims-23-1287 EDN: LHDZJZ
- Faustino R, Lopes C, Jantarada A, et al. Neuroimaging characterization of multiple sclerosis lesions in pediatric patients: an exploratory radiomics approach. Frontiers in Neuroscience. 2024;18:1294574. doi: 10.3389/fnins.2024.1294574 EDN: RNNXQT
- Khajetash B, Talebi A, Bagherpour Z, et al. Introducing radiomics model to predict active plaque in multiple sclerosis patients using magnetic resonance images. Biomedical Physics & Engineering Express. 2023;9(5):055004. doi: 10.1088/2057-1976/ace261 EDN: HDXOFH
- Tavakoli H, Pirzad Jahromi G, Sedaghat A. Investigating the ability of radiomics features for diagnosis of the active plaque of multiple sclerosis patients. J Biomed Phys Eng. 2023;13(5):421–432. doi: 10.31661/jbpe.v0i0.2302-1597
- Peng Y, Zheng Y, Tan Z, et al. Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach. Multiple Sclerosis and Related Disorders. 2021;53:102989. doi: 10.1016/j.msard.2021.102989 EDN: IISAZL
- Shekari F, Vard A, Adibi I, Danesh-Mobarhan S. Investigating the feasibility of differentiating MS active lesions from inactive ones using texture analysis and machine learning methods in DWI images. Multiple Sclerosis and Related Disorders. 2024;82:105363. doi: 10.1016/j.msard.2023.105363 EDN: KIMYMB
- Caruana G, Pessini LM, Cannella R, et al. Texture analysis in susceptibility-weighted imaging may be useful to differentiate acute from chronic multiple sclerosis lesions. European Radiology. 2020;30(11):6348–6356. doi: 10.1007/s00330-020-06995-3 EDN: OKAYUH
- Michoux N, Guillet A, Rommel D, et al. Texture analysis of T2-weighted MR images to assess acute inflammation in brain MS lesions. PLOS ONE. 2015;10(12):e0145497. doi: 10.1371/journal.pone.0145497
- Li T, Chen X, Jing Y, et al. Diagnostic value of multiparameter MRI-based radiomics in pediatric myelin oligodendrocyte glycoprotein antibody–associated disorders. American Journal of Neuroradiology. 2023;44(12):1425–1431. doi: 10.3174/ajnr.a8045 EDN: IKDICQ
- He T, Zhao W, Mao Y, et al. MS or not MS: T2-weighted imaging (T2WI)-based radiomic findings distinguish MS from its mimics. Multiple Sclerosis and Related Disorders. 2022;61:103756. doi: 10.1016/j.msard.2022.103756 EDN: WYOVXD
- Yan Z, Liu H, Chen X, et al. Quantitative susceptibility mapping-derived radiomic features in discriminating multiple sclerosis from neuromyelitis optica spectrum disorder. Frontiers in Neuroscience. 2021;15:765634. doi: 10.3389/fnins.2021.765634 EDN: FKRFCS
- Luo X, Piao S, Li H, et al. Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus. European Radiology. 2022;32(8):5700–5710. doi: 10.1007/s00330-022-08653-2 EDN: XSWOTT
- Lei M, Varghese B, Hwang D, et al. Benchmarking various radiomic toolkit features while applying the image biomarker standardization initiative toward clinical translation of radiomic analysis. Journal of Digital Imaging. 2021;34(5):1156–1170. doi: 10.1007/s10278-021-00506-6 EDN: DLKPOY
- Kocak B, Akinci D’Antonoli T, Mercaldo N, et al. METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII. Insights into Imaging. 2024;15(1):8. doi: 10.1186/s13244-023-01572-w EDN: CINMDC
- Traboulsee A, Simon JH, Stone L, et al. Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. American Journal of Neuroradiology. 2015;37(3):394–401. doi: 10.3174/ajnr.A4539
- Cè M, Chiriac MD, Cozzi A, et al. Decoding radiomics: a step-by-step guide to machine learning workflow in hand-crafted and deep learning radiomics studies. Diagnostics. 2024;14(22):2473. doi: 10.3390/diagnostics14222473 EDN: ZZVPJL
- Wichtmann BD, Harder FN, Weiss K, et al. Influence of image processing on radiomic features from magnetic resonance imaging. Investigative Radiology. 2022;58(3):199–208. doi: 10.1097/rli.0000000000000921 EDN: QBHJLD
- Krotenkova MV, Sergeeva AN, Morozova SN, et al. Neuroimaging. Brain. Moscow: Human Health; 2022. (In Russ.) Available from: https://rusneb.ru/catalog/000199_000009_011565152
- Chernyaeva GN, Morozov SP, Vladzimirskyy AV. The quality of artificial intelligence algorithms for identifying manifestations of multiple sclerosis on magnetic resonance imaging (systematic review). Annals of Clinical and Experimental Neurology. 2021;15(4):54–65. doi: 10.54101/ACEN.2021.4.6 EDN: ZUQHJJ
- Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328–338. doi: 10.1148/radiol.2020191145 EDN: HZVKJN
- Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology. 2017;14(12):749–762. doi: 10.1038/nrclinonc.2017.141
- Orzan F, Iancu D, Dioşan L, Bálint Z. Textural analysis and artificial intelligence as decision support tools in the diagnosis of multiple sclerosis — a systematic review. Frontiers in Neuroscience. 2025;18:1457420. doi: 10.3389/fnins.2024.1457420
- Kelly BS, Mathur P, McGuinness G, et al. A radiomic “warning sign” of progression on brain MRI in individuals with MS. American Journal of Neuroradiology. 2024;45(2):236–243. doi: 10.3174/ajnr.a8104 EDN: HVADZW
- Fiscone C, Rundo L, Lugaresi A, et al. Assessing robustness of quantitative susceptibility-based MRI radiomic features in patients with multiple sclerosis. Scientific Reports. 2023;13(1):16239. doi: 10.1038/s41598-023-42914-4 EDN: GYFOEM
- Rostami A, Robatjazi M, Dareyni A, et al. Enhancing classification of active and non-active lesions in multiple sclerosis: machine learning models and feature selection techniques. BMC Medical Imaging. 2024;24(1):345. doi: 10.1186/s12880-024-01528-6 EDN: UGXSIX
Supplementary files



