Texture analysis and radiomics in the diagnosis of multiple sclerosis: a review

Cover Image

Cite item

Full Text

Abstract

The clinical signs of multifocal brain lesions, including multiple sclerosis, are highly variable and largely depend on lesion site and size. Differential diagnosis of such changes may be challenging in certain cases. Vascular, inflammatory, infectious, and hereditary diseases may demonstrate similar magnetic resonance imaging patterns, whereas their assessment is limited by technical factors and human visual perception. In recent years, novel approaches such as texture analysis and radiomics have been increasingly integrated into radiological research, facilitating the acquisition of imaging details that would otherwise remain undetectable by the naked eye. These methods include first-order statistical analysis of signal intensities, gray-level co-occurrence and gray-level run-length matrices, fractal and wavelet analyses, and the development of predictive models using machine learning algorithms. Radiomics was initially developed for oncologic imaging; however, now its capabilities are also applied in the diagnosis of other conditions.

This article presents a review of the current scientific data on the use of texture analysis and radiomics in the differential diagnosis of demyelinating diseases, with a particular focus on multiple sclerosis. Data search was conducted in PubMed and eLibrary using the keywords “radiomics,” “digital image texture analysis,” “multiple sclerosis,” “радиомика” (radiomics), “текстурный анализ” (texture analysis), and “рассеянный склероз” (multiple sclerosis). The search period covered the last 9 years. Only original studies (n = 17) investigating the use of radiomics and digital image texture analysis in the diagnosis of demyelinating diseases were included in this review.

Texture analysis and radiomics represent promising adjunctive tools for the evaluation of multifocal brain lesions in demyelinating diseases. However, their implementation in clinical practice requires the development of optimized feature extraction algorithms, identification of the most informative texture parameters, and standardization and validation of the resulting imaging biomarkers.

About the authors

Gleb I. Khvastochenko

Russian Center of Neurology and Neurosciences

Author for correspondence.
Email: hvastochenko.g.i@neurology.ru
ORCID iD: 0009-0003-4628-3069
SPIN-code: 8988-6959
Russian Federation, Moscow

Vasiliy V. Bryukhov

Russian Center of Neurology and Neurosciences

Email: abdomen@rambler.ru
ORCID iD: 0000-0002-1645-6526
SPIN-code: 6299-3604

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Marina V. Krotenkova

Russian Center of Neurology and Neurosciences

Email: krotenkova_mrt@mail.ru
ORCID iD: 0000-0003-3820-4554
SPIN-code: 9663-8828

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

References

  1. Bryukhov VV, Kulikova SN, Korotenkova MV. State-of-the-art neuroimaging techniques in pathogenesis of multiple sclerosis. Annals of Clinical and Experimental Neurology. 2013;7(3):47–54. EDN: RCNGNX
  2. Zakharova MN, Askarova LSh, Bakulin IS, et al. Modern principles of multiple sclerosis therapy. In: Diseases of the Nervous System: Mechanisms of Development, Diagnosis and Treatment. Moscow: Buki-Vedi; 2017. P. 563–583. (In Russ.) EDN: DWXVSD
  3. Walton C, King R, Rechtman L, et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Multiple Sclerosis Journal. 2020;26(14):1816–1821. doi: 10.1177/1352458520970841 EDN: KZKBAV
  4. Boynova IV, Samarina DV, Katorova AV, Tokareva NG. Clinical and epidemiological features of multiple sclerosis in the Russian Federation. Modern Problems of Science and Education. 2022;(5):139. doi: 10.17513/spno.32006 EDN: RXKCDE
  5. Eliseeva DD, Zakharova MN. Mechanisms of neurodegeneration in multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(7-2):5–13. doi: 10.17116/jnevro20221220725 EDN: IEDSCQ
  6. Ye H, Shaghaghi M, Chen Q, et al. In vivo proton exchange rate (kex) MRI for the characterization of multiple sclerosis lesions in patients. Journal of Magnetic Resonance Imaging. 2020;53(2):408–415. doi: 10.1002/jmri.27363 EDN: DJQYRX
  7. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nature Reviews Immunology. 2015;15(9):545–558. doi: 10.1038/nri3871
  8. Giovannoni G, Butzkueven H, Dhib-Jalbut S, et al. Brain health: time matters in multiple sclerosis. Multiple Sclerosis and Related Disorders. 2016;9:S5–S48. doi: 10.1016/j.msard.2016.07.003 EDN: YWFZHV
  9. Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. The Lancet Neurology. 2018;17(2):162–173. doi: 10.1016/S1474-4422(17)30470-2 EDN: VCVLDN
  10. Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Current Opinion in Neurology. 2002;15(3):239–245. doi: 10.1097/00019052-200206000-00003
  11. Filippi M. Magnetic resonance techniques in multiple sclerosis. Archives of Neurology. 2011;68(12):1514. doi: 10.1001/archneurol.2011.914
  12. Tavazzi E, Zivadinov R, Dwyer MG, et al. MRI biomarkers of disease progression and conversion to secondary-progressive multiple sclerosis. Expert Review of Neurotherapeutics. 2020;20(8):821–834. doi: 10.1080/14737175.2020.1757435 EDN: NQVWRM
  13. Danchenko IY, Kulesh AA, Drobakha VE, et al. CADASIL syndrome: differential diagnosis with multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(10):128–136. doi: 10.17116/jnevro201911910128 EDN: XRLSFO
  14. Krotenkova IA, Bryukhov VV, Konovalov RN, et al. Magnetic resonance imaging in the differential diagnosis of multiple sclerosis and other demyelinating diseases. Journal of Radiology and Nuclear Medicine. 2019;100(4):229–236. doi: 10.20862/0042-4676-2019-100-4-229-236 EDN: SKMDAN
  15. Savintseva ZI, Ilves AG, Lebedev VM, et al. Difficulties in the differential diagnosis of multiple sclerosis and Susak syndrome. Diagnostic Radiology and Radiotherapy. 2021;12(1):24–29. doi: 10.22328/2079-5343-2020-12-1-24-29 EDN: AXHHKG
  16. Litvin AA, Burkin DA, Kropinov AA, Paramzin FN. Radiomics and digital image texture analysis in oncology (review). Modern Technologies in Medicine. 2021;13(2):97–106. doi: 10.17691/stm2021.13.2.11 EDN: AITKVR
  17. Kimpe T, Tuytschaever T. Increasing the number of gray shades in medical display systems—how much is enough? Journal of Digital Imaging. 2006;20(4):422–432. doi: 10.1007/s10278-006-1052-3 EDN: GSXTLG
  18. Alic L, Niessen WJ, Veenland JF. Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. PLoS ONE. 2014;9(10):e110300. doi: 10.1371/journal.pone.0110300
  19. Nioche C, Orlhac F, Boughdad S, et al. LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Research. 2018;78(16):4786–4789. doi: 10.1158/0008-5472.CAN-18-0125
  20. Choi JY. Radiomics and deep learning in clinical imaging: what should we do? Nuclear Medicine and Molecular Imaging. 2018;52(2):89–90. doi: 10.1007/s13139-018-0514-0 EDN: HHOKSZ
  21. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–577. doi: 10.1148/radiol.2015151169
  22. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. European Journal of Cancer. 2012;48(4):441–446. doi: 10.1016/j.ejca.2011.11.036
  23. Zhang M, Wang Y, Lv M, et al. Trends and hotspots in global radiomics research: a bibliometric analysis. Technology in Cancer Research & Treatment. 2024;23. doi: 10.1177/15330338241235769 EDN: ZCAHJC
  24. Liu Y, Dong D, Zhang L, et al. Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder. European Radiology. 2019;29(9):4670–4677. doi: 10.1007/s00330-019-06026-w EDN: HUUABH
  25. Kocak B, Baessler B, Cuocolo R, et al. Trends and statistics of artificial intelligence and radiomics research in Radiology, Nuclear Medicine, and Medical Imaging: bibliometric analysis. European Radiology. 2023;33(11):7542–7555. doi: 10.1007/s00330-023-09772-0 EDN: DHATXP
  26. Scapicchio C, Gabelloni M, Barucci A, et al. A deep look into radiomics. La Radiologia Medica. 2021;126(10):1296–1311. doi: 10.1007/s11547-021-01389-x EDN: CFTFXK
  27. Morozov SP, Chernyaeva GN, Bazhin AV, et al. Validation of diagnostic accuracy of anartificial intelligence algorithm for detecting multiple sclerosis in a city polyclinic setting. Diagnostic Radiology and Radiotherapy. 2020;11(2):58–65. doi: 10.22328/2079-5343-2020-11-2-58-65 EDN: BZSYPH
  28. Luo X, Li H, Xia W, et al. Joint radiomics and spatial distribution model for MRI-based discrimination of multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin-oligodendrocyte-glycoprotein-IgG-associated disorder. European Radiology. 2023;34(7):4364–4375. doi: 10.1007/s00330-023-10529-y
  29. Nioche C, Orlhac C, Buvat I. Texture—user guide: Local Image Features Extraction. 2019. Avaliable from: https://www.lifexsoft.org/images/UserGuide/TextureUserGuide.pdf
  30. Weber CE, Wittayer M, Kraemer M, et al. Quantitative MRI texture analysis in chronic active multiple sclerosis lesions. Magnetic Resonance Imaging. 2021;79:97–102. doi: 10.1016/j.mri.2021.03.016 EDN: TIKTJC
  31. Shi Z, Ma Y, Ding S, et al. Radiomics derived from T2-FLAIR: the value of 2- and 3-classification tasks for different lesions in multiple sclerosis. Quantitative Imaging in Medicine and Surgery. 2024;14(2):2049–2059. doi: 10.21037/qims-23-1287 EDN: LHDZJZ
  32. Faustino R, Lopes C, Jantarada A, et al. Neuroimaging characterization of multiple sclerosis lesions in pediatric patients: an exploratory radiomics approach. Frontiers in Neuroscience. 2024;18:1294574. doi: 10.3389/fnins.2024.1294574 EDN: RNNXQT
  33. Khajetash B, Talebi A, Bagherpour Z, et al. Introducing radiomics model to predict active plaque in multiple sclerosis patients using magnetic resonance images. Biomedical Physics & Engineering Express. 2023;9(5):055004. doi: 10.1088/2057-1976/ace261 EDN: HDXOFH
  34. Tavakoli H, Pirzad Jahromi G, Sedaghat A. Investigating the ability of radiomics features for diagnosis of the active plaque of multiple sclerosis patients. J Biomed Phys Eng. 2023;13(5):421–432. doi: 10.31661/jbpe.v0i0.2302-1597
  35. Peng Y, Zheng Y, Tan Z, et al. Prediction of unenhanced lesion evolution in multiple sclerosis using radiomics-based models: a machine learning approach. Multiple Sclerosis and Related Disorders. 2021;53:102989. doi: 10.1016/j.msard.2021.102989 EDN: IISAZL
  36. Shekari F, Vard A, Adibi I, Danesh-Mobarhan S. Investigating the feasibility of differentiating MS active lesions from inactive ones using texture analysis and machine learning methods in DWI images. Multiple Sclerosis and Related Disorders. 2024;82:105363. doi: 10.1016/j.msard.2023.105363 EDN: KIMYMB
  37. Caruana G, Pessini LM, Cannella R, et al. Texture analysis in susceptibility-weighted imaging may be useful to differentiate acute from chronic multiple sclerosis lesions. European Radiology. 2020;30(11):6348–6356. doi: 10.1007/s00330-020-06995-3 EDN: OKAYUH
  38. Michoux N, Guillet A, Rommel D, et al. Texture analysis of T2-weighted MR images to assess acute inflammation in brain MS lesions. PLOS ONE. 2015;10(12):e0145497. doi: 10.1371/journal.pone.0145497
  39. Li T, Chen X, Jing Y, et al. Diagnostic value of multiparameter MRI-based radiomics in pediatric myelin oligodendrocyte glycoprotein antibody–associated disorders. American Journal of Neuroradiology. 2023;44(12):1425–1431. doi: 10.3174/ajnr.a8045 EDN: IKDICQ
  40. He T, Zhao W, Mao Y, et al. MS or not MS: T2-weighted imaging (T2WI)-based radiomic findings distinguish MS from its mimics. Multiple Sclerosis and Related Disorders. 2022;61:103756. doi: 10.1016/j.msard.2022.103756 EDN: WYOVXD
  41. Yan Z, Liu H, Chen X, et al. Quantitative susceptibility mapping-derived radiomic features in discriminating multiple sclerosis from neuromyelitis optica spectrum disorder. Frontiers in Neuroscience. 2021;15:765634. doi: 10.3389/fnins.2021.765634 EDN: FKRFCS
  42. Luo X, Piao S, Li H, et al. Multi-lesion radiomics model for discrimination of relapsing-remitting multiple sclerosis and neuropsychiatric systemic lupus erythematosus. European Radiology. 2022;32(8):5700–5710. doi: 10.1007/s00330-022-08653-2 EDN: XSWOTT
  43. Lei M, Varghese B, Hwang D, et al. Benchmarking various radiomic toolkit features while applying the image biomarker standardization initiative toward clinical translation of radiomic analysis. Journal of Digital Imaging. 2021;34(5):1156–1170. doi: 10.1007/s10278-021-00506-6 EDN: DLKPOY
  44. Kocak B, Akinci D’Antonoli T, Mercaldo N, et al. METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII. Insights into Imaging. 2024;15(1):8. doi: 10.1186/s13244-023-01572-w EDN: CINMDC
  45. Traboulsee A, Simon JH, Stone L, et al. Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. American Journal of Neuroradiology. 2015;37(3):394–401. doi: 10.3174/ajnr.A4539
  46. Cè M, Chiriac MD, Cozzi A, et al. Decoding radiomics: a step-by-step guide to machine learning workflow in hand-crafted and deep learning radiomics studies. Diagnostics. 2024;14(22):2473. doi: 10.3390/diagnostics14222473 EDN: ZZVPJL
  47. Wichtmann BD, Harder FN, Weiss K, et al. Influence of image processing on radiomic features from magnetic resonance imaging. Investigative Radiology. 2022;58(3):199–208. doi: 10.1097/rli.0000000000000921 EDN: QBHJLD
  48. Krotenkova MV, Sergeeva AN, Morozova SN, et al. Neuroimaging. Brain. Moscow: Human Health; 2022. (In Russ.) Available from: https://rusneb.ru/catalog/000199_000009_011565152
  49. Chernyaeva GN, Morozov SP, Vladzimirskyy AV. The quality of artificial intelligence algorithms for identifying manifestations of multiple sclerosis on magnetic resonance imaging (systematic review). Annals of Clinical and Experimental Neurology. 2021;15(4):54–65. doi: 10.54101/ACEN.2021.4.6 EDN: ZUQHJJ
  50. Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 2020;295(2):328–338. doi: 10.1148/radiol.2020191145 EDN: HZVKJN
  51. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology. 2017;14(12):749–762. doi: 10.1038/nrclinonc.2017.141
  52. Orzan F, Iancu D, Dioşan L, Bálint Z. Textural analysis and artificial intelligence as decision support tools in the diagnosis of multiple sclerosis — a systematic review. Frontiers in Neuroscience. 2025;18:1457420. doi: 10.3389/fnins.2024.1457420
  53. Kelly BS, Mathur P, McGuinness G, et al. A radiomic “warning sign” of progression on brain MRI in individuals with MS. American Journal of Neuroradiology. 2024;45(2):236–243. doi: 10.3174/ajnr.a8104 EDN: HVADZW
  54. Fiscone C, Rundo L, Lugaresi A, et al. Assessing robustness of quantitative susceptibility-based MRI radiomic features in patients with multiple sclerosis. Scientific Reports. 2023;13(1):16239. doi: 10.1038/s41598-023-42914-4 EDN: GYFOEM
  55. Rostami A, Robatjazi M, Dareyni A, et al. Enhancing classification of active and non-active lesions in multiple sclerosis: machine learning models and feature selection techniques. BMC Medical Imaging. 2024;24(1):345. doi: 10.1186/s12880-024-01528-6 EDN: UGXSIX

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Stages of textural and radiomic analysis (schematic representation proposed by the authors).

Download (787KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).