Use of Fleischner Society criteria for assessment of pulmonary nodules on computed tomography: practice guidelines

Cover Image

Cite item

Full Text

Abstract

This article is an adapted version of the “Use of the Fleischner Society Criteria for the Assessment of Pulmonary Nodules on Computed Tomography: Practice Guidelines” published in the series Best Practices in Radiological and Instrumental Diagnostics (2024, Issue 142). These guidelines reflect the consensus of the Fleischner Society regarding pulmonary nodules detected by computed tomography. They are developed to reduce the number of unnecessary follow-up examinations and provide clear management strategies for incidentally detected pulmonary nodules in patients outside lung cancer screening programs. Outside lung cancer screening, the unified Fleischner Society terminology and the standardized interpretation of chest computed tomography findings facilitates effective communication and mutual understanding among healthcare professionals in clinical practice, medical education, and scientific research. These practice guidelines were approved by the Chief External Expert in Radiological and Instrumental Diagnostics of the Moscow City Health Department and were recommended by the Scientific Expert Council of the Moscow City Health Department.

The guidelines are intended for radiologists, heads of radiology units or departments of diagnostic imaging, and chief medical officers of healthcare institutions that include radiology units or departments of diagnostic imaging.

About the authors

Yuriy A. Vasilev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: VasilevYA1@zdrav.mos.ru
ORCID iD: 0000-0002-5283-5961
SPIN-code: 4458-5608

MD, Dr. Sci. (Medicine)

Russian Federation, Moscow

Natalia V. Tarasova

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Author for correspondence.
Email: TarasovaNV20@zdrav.mos.ru
ORCID iD: 0000-0003-2769-8675
SPIN-code: 4196-4059

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

Darya M. Anikina

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: AnikinaDM@zdrav.mos.ru
ORCID iD: 0000-0001-6554-4779
SPIN-code: 1005-7000
Russian Federation, Moscow

Ivan A. Blokhin

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: BlokhinIA@zdrav.mos.ru
ORCID iD: 0000-0002-2681-9378
SPIN-code: 3306-1387

MD, Cand. Sci. (Medicine)

Russian Federation, Moscow

References

  1. Tuddenham WJ. Glossary of terms for thoracic radiology: recommendations of the Nomenclature Committee of the Fleischner Society. American Journal of Roentgenology. 1984;143(3):509–517. doi: 10.2214/ajr.143.3.509
  2. Tyurin IE, Avdeev SN, Gavrilov PV, et al. Glossary of terms for thoracic imaging. Journal of Radiology and Nuclear Medicine. 2023;104 (5):292–332. doi: 10.20862/0042-4676-2023-104-5-292-3323 EDN: RUGJSY
  3. Nikolaev AE, Suchilova MM, Korkunova OA, et al. Terminology for describing chest organs – radiography and computed tomography. Moscow: Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; 2022. (In Russ.) EDN: CCEZRC
  4. Hansell DM, Bankier AA, MacMahon H, et al. Fleischner society: glossary of terms for thoracic imaging. Radiology. 2008;246(3):697–722. doi: 10.1148/radiol.2462070712
  5. Tyurin IE. Solitary lesions in the lungs: possibilities of radiological diagnostics. // Prakticheskaya pul'monologiya. 2008;(2):15–22. (In Russ.) EDN: MUCXKR
  6. Lindenbraten LD, Korolyuk IP. Medical radiology (fundamentals of radiation diagnostics and radiation therapy). Moscow: Meditsina; 1992. ISBN 5-225-00859-3 (In Russ.) EDN: VKYEEQ
  7. Rozenshtraukh LS, Rybakova NI, Vinner MG. Radiographic diagnostics of respiratory diseases: a guide for physicians. Moscow: Meditsina; 1987. (In Russ.) Available from: https://djvu.online/file/QAqpHol0o5KiI?ysclid = mibqcgpwvn431333014
  8. Kokov LS, Lindenbraten LD. Encyclopedic dictionary for diagnostic radiology: (English-Russian). Moscow: Radiology Press, 2017. ISBN: 978-5-9902356-1-8 EDN: VSPJSG
  9. Khoruzhik SA, Bogushevich EV, Sprindzhuk MV, et al. Computer-assisted diagnostics of lung nodules. Problems in Oncology. 2011;57(1):25–35. (In Russ.) EDN: OALANB
  10. Yudin AL. Metaphorical signs in computed tomography of chest and abdomen. Moscow: Pirogov Russian National Research Medical University; 2012. ISBN: 978-5-88458-288-0 (In Russ.) EDN: ZBDXAT
  11. Brandman S, Ko JP. Pulmonary nodule detection, characterization, and management with multidetector computed tomography. Journal of Thoracic Imaging. 2011;26(2):90–105. doi: 10.1097/RTI.0b013e31821639a9
  12. Lindenbraten LD, Korolyuk IP, Vorobev YuI. Medical radiology (fundamentals of radiation diagnostics and radiation therapy). Moscow: Meditsina; 2000. ISBN: 5-225-04403-4 (In Russ.) EDN: YMMUAH
  13. MacMahon H, Austin JHM, Gamsu G, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner society. Radiology. 2005;237(2):395–400. doi: 10.1148/radiol.2372041887
  14. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner society 2017. Radiology. 2017;284(1):228–243. doi: 10.1148/radiol.2017161659 EDN: YFHDCY
  15. Henschke CI, Yankelevitz DF, Mirtcheva R, et al. CT screening for lung cancer. American Journal of Roentgenology. 2002;178(5):1053–1057. doi: 10.2214/ajr.178.5.1781053
  16. Ahn MI, Gleeson TG, Chan IH, et al. Perifissural nodules seen at CT screening for lung cancer. Radiology. 2010;254(3):949–956. doi: 10.1148/radiol.09090031
  17. Naidich DP, Bankier AA, MacMahon H, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner society. Radiology. 2013;266(1):304–317. doi: 10.1148/radiol.12120628 EDN: DSGJKK

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Types of pulmonary lesions.

Download (51KB)
3. Table 1_Fig. 1

Download (54KB)
4. Table 1_Fig. 2

Download (48KB)
5. Table 1_Fig. 3

Download (29KB)
6. Table 1_Fig. 4

Download (56KB)
7. Table 2_Fig. 1

Download (27KB)
8. Table 2_Fig. 2

Download (35KB)
9. Table 3_Fig. 1

Download (28KB)
10. Table 3_Fig. 2

Download (21KB)
11. Table 3_Fig. 3

Download (31KB)
12. Fig. 2. High-risk factors for pulmonary lesions.

Download (149KB)
13. Fig. 3. Overall risk assessment for pulmonary lesion.

Download (148KB)
14. Appendix A. Algorithm for doctors working with recommendations from the Fleischner Society

Download (382KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).