Potential use of radiation methods for diagnosing bone metastases of castration-resistant prostate cancer: a literature review

Cover Image

Cite item

Abstract

Metastatic castration resistant prostate cancer (mCRPC) is the tumor progression with the development of resistance to androgen deprivation therapy. The incidence of bone metastases in these patients reaches 90%. Radiology is widely used to diagnose mCRPC. Computed tomography (CT) and magnetic resonance imaging (MRI) are beneficial in anatomic imaging, but have some limitations in evaluating effectiveness of disease treatment. Scintigraphy is used to screen for bone metastases, but is poorly suited for assessing disease progression. Positron emission tomography (PET) combined with CT and single photon emission CT are used for early detection of local or systemic spread of prostate cancer. PET of prostate specific membrane antigen is used to predict the effectiveness of anti tumor therapy based on the absorbed dose of a radiopharmaceutical (RP). The introduction of RPs (177Lu-PSMA) opens up new perspectives for radionuclide therapy with simultaneous evaluation of its efficacy using hybrid visualization. The potential use of radiology in the diagnosis of bone metastases is of particular interest for the analysis and systematization of the data obtained and for the development of indications for radioligand therapy and the evaluation of its efficacy.

Published data indicate that radiologic modalities for the diagnosis of mCRPC vary in sensitivity and specificity and have their own advantages and limitations, so these modalities should be combined.

The development and improvement of methods to quantitatively assess treatment efficacy and identify prognostic markers will enable more informed selection of treatment strategies and radiopharmaceuticals, leading to improved overall survival.

About the authors

Anastasia A. Karpova

Pulmonology Scientific Research Institute

Author for correspondence.
Email: karpovaaadoc@yandex.ru
ORCID iD: 0000-0002-0251-254X
SPIN-code: 9993-5553

MD, Radiologist 

Russian Federation, Moscow

Nikolay I. Sergeev

Russian Scientific Center of Roentgenoradiology

Email: sergeevnickolay@yandex.ru
ORCID iD: 0000-0003-4147-1928
SPIN-code: 2408-6502

MD, Dr. Sci. (Medicine), Head of  Laboratory of  Roentgenoradiology of the Complex Diagnostics of Diseases and Radiotherapy department

Russian Federation, Moscow

Olga A. Borisova

Russian Scientific Center of Roentgenoradiology

Email: olga250578@yandex.ru
ORCID iD: 0009-0003-7809-0130
SPIN-code: 2416-1885

MD, Cand. Sci. (Medicine), Radiologist, Head of the Radionuclide Diagnostics Department

Russian Federation, Moscow

Pavel A. Nikitin

Pulmonology Scientific Research Institute

Email: paul2003@mail.ru
ORCID iD: 0000-0003-1809-6330
SPIN-code: 6257-2399

MD, Cand. Sci. (Medicine), head of X-ray department - radiologist

Russian Federation, Moscow

Dmitriy K. Fomin

Russian Scientific Center of Roentgenoradiology

Email: dkfomin@yandex.ru
ORCID iD: 0000-0002-7316-3519
SPIN-code: 4593-1292

MD, Dr. Sci. (Medicine), Professor of the Russian Academy of Sciences, Head of the Nuclear Medicine Clinic

Russian Federation, Moscow

Vladimir A. Solodkiy

Russian Scientific Center of Roentgenoradiology

Email: director@rncrr.ru
ORCID iD: 0000-0002-1641-6452
SPIN-code: 9556-6556

MD, Dr. Sci. (Medicine), Professor, Academician of the Russian Academy of Sciences

Russian Federation, Moscow

References

  1. Kaprin AD, Alekseev BYa, Matveev VB, et al. Rak predstatel’noi zhelezy. Klinicheskie rekomendatsii // Obshcherossiiskii natsional’nyi soyuz «Assotsiatsiya onkologov Rossii». 2021. (In Russ.) EDN: RLCXWE
  2. Gevorkyan AR, Molodtsov MS, Aleksandrov EV. Prostate cancer diagnosis as part of high tech advanced outpatient medical care. Urology Herald. 2023;11(1):26–33. doi: 10.21886/2308-6424-2023-11-1-26-33
  3. Ling SW, de Blois E, Hooijman E, et al. Advances in 177Lu-PSMA and 225Ac-PSMA Radionuclide Therapy for Metastatic Castration Resistant Prostate Cancer. Pharmaceutics. 2022;14(10):2166. doi: 10.3390/pharmaceutics14102166
  4. Sekhoacha M, Riet K, Motloung P, et al. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules. 2022;27(17):5730. doi: 10.3390/molecules27175730
  5. Solodky VA, Pavlov АYu, Fomin DK, et al. Determination of the role of lutetium-PSMA in prostate cancer. Vestnik RNTsRR. 2022;22(2):27–36. EDN: UNNDSN
  6. Medvedeva AA, Chernov VI, Usynin EA, et al. Use of 177Lu-PSMA for radionuclide therapy in patients with castrate resistant prostate cancer. Siberian Journal of Oncology. 2021;20(3):115–123. EDN: DIJSIE doi: 10.21294/1814-4861-2021-20-3-115-123
  7. Pezaro CJ, Omlin A, Lorente D, et al. Visceral Disease in Castration resistant Prostate Cancer. Eur Urol. 2014;65(2):270–273. doi: 10.1016/j.eururo.2013.10.055
  8. Clezardin P, Coleman R, Puppo M, et al. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev. 2021;101(3):797–855. doi: 10.1152/physrev.00012.2019
  9. Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun. 2019;39(1):76. doi: 10.1186/s40880-019-0425-1
  10. Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate specific membrane antigen PET-CT in patients with high risk prostate cancer before curative intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet. 2020;395(10231):1208–1216. doi: 10.1016/S0140-6736(20)30314-7
  11. Awenat S, Piccardo A, Carvoeiras P, et al. Diagnostic Role of 18F-PSMA-1007 PET/CT in Prostate Cancer Staging: A Systematic Review. Diagnostics. 2021:11(3):552. doi: 10.3390/diagnostics11030552
  12. Alberts I, Sachpekidis C, Fech V, et al. PSMA-negative prostate cancer and the continued value of choline-PET/CT. Nuklearmedizin. 2020;59(1):33–34. doi: 10.1055/a-1044-1855
  13. Sartor O, Baghian A. Prostate specific membrane antigen binding radiopharmaceuticals: Current data and new concepts. Front Med (Lausanne). 2022;9(1060922). doi: 10.3389/fmed.2022.1060922
  14. Plichta KA, Graves SA, Buatti JM. Prostate Specific Membrane Antigen (PSMA) Theranostics for Treatment of Oligometastatic Prostate Cancer. Int J Mol Sci. 2021;22(22):12095. doi: 10.3390/ijms222212095
  15. Sun M, Niaz MJ, Niaz MO, et al. Prostate Specific Membrane Antigen (PSMA)-Targeted Radionuclide Therapies for Prostate Cancer. Curr Oncol Rep. 2021; 23(5):59. doi: 10.1007/s11912-021-01042-w
  16. Alberts I, Sachpekidis C, Dijkstra L, et al. The role of additional late PSMA-ligand PET/CT in the differentiation between lymph node metastases and ganglia. Eur J Nucl Med Mol Imaging. 2020;47(3):642–651. doi: 10.1007/s00259-019-04552-9
  17. Khreish F, Ebert N, Ries M, et al. 225Ac-PSMA-617/177Lu-PSMA-617 tandem therapy of metastatic castration resistant prostate cancer: pilot experience. Eur J Nucl Med Mol Imaging. 2020;47(3):721–728. doi: 10.1007/s00259-019-04612-0
  18. Kendrick J, Francis R, Hassan GM, et al. Radiomics for Identification and Prediction in Metastatic Prostate Cancer: A Review of Studies. Front Oncol. 2021;11:771–787. doi: 10.3389/fonc.2021.771787
  19. Macedo F, Ladeira K, Pinho F, et al. Bone metastases: an overview. Oncol Rev. 2017;11(1):321. doi: 10.4081/oncol.2017.321
  20. Kitagawa Y, Yamaoka T, Yokouchi M, et al. Diagnostic Value of Plain Radiography for Symptomatic Bone Metastasis at the First Visit. J Nippon Med Sch. 2018;85(6):315–321. doi: 10.1272/jnms.JNMS.2018_85-51
  21. Cornford P, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer. Part II–2020 Update: Treatment of Relapsing and Metastatic Prostate Cancer. Eur Urol. 2021;79(2):263–282. doi: 10.1016/j.eururo.2020.09.046
  22. Liu T, Wang S, Liu H, et al. Detection of vertebral metastases: a meta analysis comparing MRI, CT, PET, BS and BS with SPECT. J Cancer Res Clin Oncol. 2017;143(3):457–465. doi: 10.1007/s00432-016-2288-z
  23. Sergeev NI, Kotlyarov PM, Teplyakov VV, et al. Features of the application of diagnostic imaging methods in evaluating the results of treatment of bone metastases. Russian Electronic Journal of Radiology. 2021;11(4):84–93. EDN: YQNNKI doi: 10.21294/1814-4861-2018-17-1-5-10
  24. Chen Z, Chen X, Wang R. Application of SPECT and PET / CT with computer aided diagnosis in bone metastasis of prostate cancer: a review. Cancer Imaging. 2022;22(1):18. doi: 10.1186/s40644-022-00456-4
  25. Steinhauer V, Sergeev NI. Radiomics in Breast Cancer: In Depth Machine Analysis of MR Images of Metastatic Spine Lesion. Sovremennye tehnologii v medicine. 2022;14(2):16. doi: 10.17691/stm2022.14.2.02
  26. Vilanova JC, Garcia Figueiras R, Luna A, et al. Update on Whole body MRI in Musculoskeletal Applications. Semin Musculoskelet Radiol. 2019;23(3):312–323. doi: 10.1055/s-0039-1685540
  27. Padhani AR, Lecouvet FE, Tunariu N, et al. Rationale for Modernising Imaging in Advanced Prostate Cancer. Eur Urol Focus. 2017:3(2–3):223–239. doi: 10.1016/j.euf.2016.06.018
  28. Karman AV, Abakumova EA, Shimanets SV, et al. Multiparametric MRI prostate cancer detection and staging. Oncological journal. 2019;1(49):136–147. EDN: VTNFYB
  29. Perez Lopez R, Mateo J, Mossop H, et al. Diffusion weighted Imaging as a Treatment Response Biomarker for Evaluating Bone Metastases in Prostate Cancer: A Pilot Study. Radiology. 2017;283(1):168–177. doi: 10.1148/radiol.2016160646
  30. Nakanishi K, Tanaka J, Nakaya Y, et al. Whole body MRI: detecting bone metastases from prostate cancer. Jpn J Radiol. 2022;40(3):229–244. doi: 10.1007/s11604-021-01205-6
  31. Sun G, Zhang Y.X., Liu F., et al. Whole body magnetic resonance imaging is superior to skeletal scintigraphy for the detection of bone metastatic tumors: a meta analysis. Eur Rev Med Pharmacol Sci. 2020;24(13):7240–7252. doi: 10.26355/eurrev_202007_21879
  32. Padhani AR, Lecouvet FE, Tunariu N, et al. METastasis Reporting and Data System for Prostate Cancer: Practical Guidelines for Acquisition, Interpretation, and Reporting of Whole body Magnetic Resonance Imaging based Evaluations of Multiorgan Involvement in Advanced Prostate Cancer. Eur Urol. 2017;71(1):81–92. doi: 10.1016/j.eururo.2016.05.033
  33. Van den Wyngaert T, Strobel K, Kampen WU, et al. The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging. 2016;43(9):1723–1738. doi: 10.1007/s00259-016-3415-4
  34. Scher HI, Morris MJ, Stadler WM, et al. Trial Design and Objectives for Castration Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol. 2016;34(12):1402–1418. doi: 10.1200/JCO.2015.64.2702
  35. Anand A, Heller G, Fox J, et al. Automated Bone Scan Index to Optimize Prostate Cancer Working Group Radiographic Progression Criteria for Men With Metastatic Castration Resistant Prostate Cancer. Clin Genitourin Cancer. 2022;20(3):270–277. doi: 10.1016/j.clgc.2022.02.002
  36. Chao HS, Chang CP, Chiu CH, et al. Bone Scan Flare Phenomenon in Non Small Cell Lung Cancer Patients Treated With Gefitinib. Clin Nucl Med. 2009;34(6):346–349. doi: 10.1097/RLU.0b013e3181a344df
  37. van der Zande K, Oyen WJG, Zwart W, et al. Radium 223 Treatment of Patients with Metastatic Castration Resistant Prostate Cancer: Biomarkers for Stratification and Response Evaluation. Cancers (Basel). 2021;13(17):4346. doi: 10.3390/cancers13174346
  38. Nakajima K, Edenbrandt L, Mizokami A. Bone scan index: A new biomarker of bone metastasis in patients with prostate cancer. Int J Urol. 2017;24(9):668–673. doi: 10.1111/iju.13386
  39. Ruchalski K, Dewan R, Sai V, et al. Imaging response assessment for oncology: An algorithmic approach. Eur J Radiol Open. 2022;9:100426. doi: 10.1016/j.ejro.2022.100426
  40. Eremenko AV, Kosyh NE, Razuvaev VA, et al. Investigation of computer automated analysis capabilities for the effective diagnosis of disseminated prostate cancer. Diagnostic radiology and radiotherapy. 2019;1:74–85. EDN: NQOKHZ doi: 10.22328/2079-5343-2019-10-1-74-85
  41. Dennis ER, Jia X, Mezheritskiy IS, et al. Bone Scan Index: A Quantitative Treatment Response Biomarker for Castration Resistant Metastatic Prostate Cancer. J Clin Oncol. 2012;30(5):519–524. doi: 10.1200/JCO.2011.36.5791
  42. Sheikhbahaei S., Jones K.M., Werner R.A., et al. 18F-NaF-PET/CT for the detection of bone metastasis in prostate cancer: a meta analysis of diagnostic accuracy studies. Ann Nucl Med. 2019;33(5): 351–361. doi: 10.1007/s12149-019-01343-y
  43. Shen G, Deng H, Hu S, et al. Comparison of choline-PET/CT, MRI, SPECT, and bone scintigraphy in the diagnosis of bone metastases in patients with prostate cancer: a meta analysis. Skeletal Radiol. 2014;43(11):1503–1513. doi: 10.1007/s00256-014-1903-9
  44. Sergeev NI, Fomin DK, Kotlyarov PM, et al. Comparative Study of the Possibilities of Bone Scintigraphy and Magnetic Resonance Imaging of the Whole Body in the Diagnosis of Bone Metastases. Medical Visualization. 2014;4:107–113. EDN: SNIDQB
  45. Blackwell W. Radiology Nuclear Medicine Diagnostic Imaging: A Correlative Approach. First. Edited by Gholamrezanezhad A, Assadi M, Jadvar H USA. 2023.
  46. Mohd Rohani MF, Mat Nawi N, Shamim SE, et al. Maximum standardized uptake value from quantitative bone single photon emission computed tomography/computed tomography in differentiating metastatic and degenerative joint disease of the spine in prostate cancer patients. Ann Nucl Med. 2020;34(1):39–48. doi: 10.1007/s12149-019-01410-4
  47. Okamoto S, Thieme A, Allmann J, et al. Radiation Dosimetry for 177Lu-PSMA I&T in Metastatic Castration Resistant Prostate Cancer: Absorbed Dose in Normal Organs and Tumor Lesions. J Nucl Med. 2017;58(3):445–450. doi: 10.2967/jnumed.116.178483
  48. Ghodsirad MA, Pirayesh E, Akbarian R, et al. Diagnostic Utility of Lutetium-177 (Lu 177) Prostate Specific Membrane Antigen (PSMA) Scintigraphy In Prostate Cancer Patients With PSA Rise And Negative Conventional Imaging. Urol J. 2020; 23;17(4):374–378. doi: 10.22037/uj.v0i0.5451
  49. Venkatachalapathy VSS, Rajeshkannan R, Sarma M, et al. Comparison of whole body bone scintigraphy with axial skeleton magnetic resonance imaging in the skeletal evaluation of carcinoma prostate. Indian J Urol. 2021;37(1):72–78. doi: 10.4103/iju.IJU_238_20
  50. Sergeev NI, Fomin DK, Kotlyarov PM, Solodkiy VA. Comparative study of the possibilities of SPECT/CT and whole body MRI in the diagnosis of bone metastases. Bulletin of the Russian Scientific Center of Roentgenoradiology. 2015;15(3):8. EDN: UXMAVX
  51. Li R, Ravizzini GC, Gorin MA, et al. The use of PET/CT in prostate cancer. Prostate Cancer Prostatic Dis. 2018;21(1):4–21. doi: 10.1038/s41391-017-0007-8
  52. Azad GK, Cook GJ. Multi technique imaging of bone metastases: spotlight on PET-CT. Clin Radiol. 2016;71(7):620–631. doi: 10.1016/j.crad.2016.01.026
  53. Kannivelu A, Loke K, Kok T, et al. The Role of PET/CT in the Evaluation of Skeletal Metastases. Semin Musculoskelet Radiol. 2014;18(2):149–165. doi: 10.1055/s-0034-1371017
  54. Jadvar H. Molecular Imaging of Prostate Cancer: PET Radiotracers. AJR Am J Roentgenol. 2012;199(2):278–291. doi: 10.2214/AJR.12.8816
  55. Alam MR, Singh SB, Thapaliya S, et al. A Review of 177Lutetium-PSMA and 225Actinium-PSMA as Emerging Theranostic Agents in Prostate Cancer. Cureus. 2022; 14(9):29369. doi: 10.7759/cureus.29369
  56. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026
  57. Acar E, Özdoğan Ö, Aksu A, et al. The use of molecular volumetric parameters for the evaluation of Lu-177 PSMA I&T therapy response and survival. Ann Nucl Med. 2019;33(9):681–688. doi: 10.1007/s12149-019-01376-3
  58. Maffey Steffan J, Scarpa L, Svirydenka A, et al. The 68Ga/177Lu-theragnostic concept in PSMA-targeting of metastatic castration resistant prostate cancer: impact of post therapeutic whole body scintigraphy in the follow up. Eur J Nucl Med Mol Imaging. 2020;47(3):695–712. doi: 10.1007/s00259-019-04583-2
  59. O J, Lodge M, Wahl R. Practical PERCIST: A Simplified Guide to PET Response Criteria in Solid Tumors 1.0. Radiology. 2016;280(2):576–584. doi: 10.1148/radiol.2016142043
  60. Schmuck S, von Klot CA, Henkenberens C, et al. Initial Experience with Volumetric 68 Ga-PSMA I&T PET/CT for Assessment of Whole Body Tumor Burden as a Quantitative Imaging Biomarker in Patients with Prostate Cancer. J Nucl Med. 2017;58(12):1962–1968. doi: 10.2967/jnumed.117.193581
  61. Tanaka K, Norikane T, Mitamura K, et al. Quantitative [99mTc]Tc-MDP SPECT/CT correlated with [18F]NaF PET/CT for bone metastases in patients with prostate cancer. EJNMMI Phys. 2022;9(1):83. doi: 10.1186/s40658-022-00513-8
  62. Vlachostergios PJ, Niaz MJ, Sun M, et al. Prostate Specific Membrane Antigen Uptake and Survival in Metastatic Castration Resistant Prostate Cancer. Front Oncol. 2021;11:630589. doi: 10.3389/fonc.2021.630589
  63. Beyersdorff D, Rahbar K, Essler M, et al. Interdisziplinärer Expertenkonsensus zu Innovationen der bildgebenden Diagnostik und radionuklidbasierten Therapien des fortgeschrittenen Prostatakarzinoms. Urologe A. 2021;60:1579–1585. doi: 10.1007/s00120-021-01598-2
  64. Gafit A, Rauscher I, Weber M, et al. Novel Framework for Treatment Response Evaluation Using PSMA PET/CT in Patients with Metastatic Castration Resistant Prostate Cancer (RECIP 1.0): An International Multicenter Study. J Nucl Med. 2022;63(11):1651–1658. doi: 10.2967/jnumed.121.263072
  65. Isaac A, Dalili D, Dalili D, et al. State of the art imaging for diagnosis of metastatic bone disease. Radiologe. 2020;60(1):1–16. doi: 10.1007/s00117-020-00666-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. 1. a — multispiral computed tomography of the lumbar spine, sagittal section: osteoblastic foci in the bodies of the S1 and S2 vertebrae (white arrow), hemangioma in the body of the L2 vertebra (orange arrow); b - multispiral computed tomography of the thoracic spine, sagittal section: osteoblastic foci in the bodies of the thoracic vertebrae (white arrow), a mixed focus in the body of the Th12 vertebra (orange arrow).

Download (234KB)
3. Fig. 2. a, b — magnetic resonance imaging of the pelvic organs, frontal section, T2-weighted images; c, d — magnetic resonance imaging of the pelvic organs, frontal section, T1-weighted images; dynamic observation a, c from 02.2023 and b, d 07.2023: osteoblastic foci in the pelvic bones, an increase in the size of foci during dynamic observation (white arrows).

Download (310KB)
4. Fig. 3. a — Whole body scintigraphy after administration of 177Lu-PSMA, anterior projection; b — posterior projection from 12.2021: diffuse focal hyperfixation of a radiopharmaceutical of varying intensity - multiple PSMA—positive foci in bones; c - whole body scintigraphy after administration of 177Lu—PSMA, anterior projection; d — posterior projection from 04.2022: a decrease in the intensity of accumulation of the radio indicator in the foci, no new foci of hyperfixation of the radiopharmaceutical were reliably detected. PSMA is a prostate—specific membrane antigen.

Download (184KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».