Anthropomorphic breast phantoms for radiology imaging: a review

Cover Image

Cite item

Abstract

Phantoms are used to validate diagnostic imaging methods or improve the skills of medical professionals. For instance, they allow conducting an unlimited number of imaging studies during medical training, assessing image quality, optimizing radiation dose, and testing novel techniques and equipment. Researchers in breast imaging use anthropomorphic models to validate, assess, and optimize new methods for diagnosing breast diseases. Such models also facilitate control over the quality of diagnostic systems, help optimize clinical protocols, and improve image reconstruction algorithms. Realistic simulation of the breast tissue is essential to address the challenges of advancing X-ray mammary gland studies. The review aimed to describe phantoms currently available for diagnostic imaging and the way they were fabricated. In this literature review, PubMed, eLIBRARY, and Google Scholar databases were screened for relevant articles. Thus, 72 articles and 13 conference papers were included. The study two major types of breast phantoms: computational and physical. Specifically, computational phantoms are classified into subgroups depending on the data they use. These include mathematical models, tissue samples, and medical images of the breast. The classification of the physical phantoms is based on their manufacturing process: casting silicone-like substances, 3D printing with resins and plastics, or printing on paper using X-ray contrast ink. Computational phantoms are generally advantageous with respect to versatility, efficiency, precision, and safety and allow the generation of large amounts of virtual data. Physical phantoms provide the most realistic diagnostic images without the need for a patient and allow performing an unlimited number of radiological studies.

About the authors

Yuriy A. Vasilev

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: VasilevYA1@zdrav.mos.ru
ORCID iD: 0000-0002-5283-5961
SPIN-code: 4458-5608

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Olga V. Omelyanskaya

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: OmelyanskayaOV@zdrav.mos.ru
ORCID iD: 0000-0002-0245-4431
SPIN-code: 8948-6152
Russian Federation, Moscow

Anastasia A. Nasibullina

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Author for correspondence.
Email: NasibullinaAA@zdrav.mos.ru
ORCID iD: 0000-0003-1695-7731
SPIN-code: 2482-3372
Russian Federation, Moscow

Denis V. Leonov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: LeonovDV2@zdrav.mos.ru
ORCID iD: 0000-0003-0916-6552
SPIN-code: 5510-4075

Cand. Sci. (Tech.)

Russian Federation, Moscow

Julia V. Bulgakova

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: BulgakovaYV@zdrav.mos.ru
ORCID iD: 0000-0002-1627-6568
SPIN-code: 8945-6205
Russian Federation, Moscow

Dina A. Akhmedzyanova

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: AkhmedzyanovaDA@zdrav.mos.ru
ORCID iD: 0000-0001-7705-9754
SPIN-code: 6983-5991
Russian Federation, Moscow

Yuliya F. Shumskaya

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: shumskayayf@zdrav.mos.ru
ORCID iD: 0000-0002-8521-4045
SPIN-code: 3164-5518
Russian Federation, Moscow

Roman V. Reshetnikov

Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies

Email: r.reshetnikov@npcmr.ru
ORCID iD: 0000-0002-9661-0254
SPIN-code: 8592-0558

Cand. Sci. (Phys. and Math.)

Russian Federation, Moscow

References

  1. Leonov D, Venidiktova D, Costa-Júnior JFS, et al. Development of an anatomical breast phantom from polyvinyl chloride plastisol with lesions of various shape, elasticity and echogenicity for teaching ultrasound examination. International Journal of Computer Assisted Radiology and Surgery. 2023. doi: 10.1007/s11548-023-02911-4
  2. Nuzov NB, Bhusal B, Henry KR, et al. True location of deep brain stimulation electrodes differs from what is seen on postoperative magnetic resonance images: An anthropomorphic phantom study. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. 2022:1863–1866. doi: 10.1109/EMBC48229.2022.9871619
  3. Cannella R, Shahait M, Furlan AA, et al. Efficacy of single-source rapid kV-switching dual-energy CT for characterization of non-uric acid renal stones: a prospective ex vivo study using anthropomorphic phantom. Abdominal Radiology. 2020;45(4):1092–1099. doi: 10.1007/s00261-019-02164-3
  4. Kramer R, Zankl M, Williams G, Drexler G, et al. The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. 1982.
  5. Vasilev YA, Tyrov IA, Vladzymyrskyy AV, et al. Double-reading mammograms using artificial intelligence technologies: A new model of mass preventive examination organization. Digital Diagnostics. 2023;4(2):93–104. doi: 10.17816/DD321423
  6. Cockmartin L, Bosmans H, Marshall NW. Comparative power law analysis of structured breast phantom and patient images in digital mammography and breast tomosynthesis. Medical physics. 2013;40(8):081920. doi: 10.1118/1.4816309
  7. Ma AKW, Gunn S, Darambara DG. Introducing DeBRa: a detailed breast model for radiological studies. Physics in medicine and biology. 2009;54(14):4533–4545. doi: 10.1088/0031-9155/54/14/010
  8. Chen B, Shorey J, Saunders RS, et al. An Anthropomorphic Breast Model for Breast Imaging Simulation and Optimization. Academic radiology. 2011;18(5):536–546. doi: 10.1016/j.acra.2010.11.009
  9. Elangovan P, Mackenzie A, Dance DR, et al. Design and validation of realistic breast models for use in multiple alternative forced choice virtual clinical trials. Physics in medicine and biology. 2017;62(7):2778–2794. doi: 10.1088/1361-6560/aa622c
  10. Bliznakova K, Suryanarayanan S, Karellas A, Pallikarakis N. Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: Application for mammography. Medical Physics. 2010;37(11):5604–5617. doi: 10.1118/1.3491812
  11. O’Connor JM, Das M, Dider C, Mahd M, Glick SJ. Generation of voxelized breast phantoms from surgical mastectomy specimens. Medical Physics. 2013;40(4). doi: 10.1118/1.4795758
  12. Lau BA, Reiser I, Nishikawa RM. A statistically defined anthropomorphic software breast phantom. Medical Physics. 2012;39(6):3375–3385. doi: 10.1118/1.4718576
  13. Sarno A, Mettivier G, di Franco F, et al. Dataset of patient-derived digital breast phantoms for in silico studies in breast computed tomography, digital breast tomosynthesis, and digital mammography. Medical Physics. 2021;48(5):2682–2693. doi: 10.1002/mp.14826
  14. Li CM, Segars WP, Tourassi GD, Boone JM, Dobbins JT. Methodology for generating a 3D computerized breast phantom from empirical data. Medical Physics. 2009;36(7):3122–3131. doi: 10.1118/1.3140588
  15. Bliznakova K, Bliznakov Z, Bravou V, Kolitsi Z, Pallikarakis N. A three-dimensional breast software phantom for mammography simulation. Physics in medicine and biology. 2003;48(22):3699–3719. doi: 10.1088/0031-9155/48/22/006
  16. Bakic PR, Albert M, Brzakovic D, Maidment AD. Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation. Medical Physics. 2002;29(9):2131–2139. doi: 10.1118/1.1501143
  17. Bakic PR, Albert M, Brzakovic D, Maidment AD. Mammogram synthesis using a 3D simulation. II. Evaluation of synthetic mammogram texture. Medical Physics. 2002;29(9):2140–2151. doi: 10.1118/1.1501144
  18. Bakic PR, Albert M, Brzakovic D, Maidment AD. Mammogram synthesis using a three-dimensional simulation. III. Modeling and evaluation of the breast ductal network. Medical Physics. 2003;30(7):1914–1925. doi: 10.1118/1.1586453
  19. Pokrajac DD, Maidment ADA, Bakic PR. Optimized generation of high resolution breast anthropomorphic software phantoms. Medical Physics. 2012;39(4):2290–2302. doi: 10.1118/1.3697523
  20. Chen F, Pokrajac D, Shi X, et al. Partial volume simulation in software breast phantoms. Medical Imaging 2012: Physics of Medical Imaging. 2012. doi: 10.1117/12.912242
  21. Graff CG. A new, open-source, multi-modality digital breast phantom. Proceedings of the SPIE. 2016;9783. doi: 10.1117/12.2216312
  22. Ikejimba LC, Salad J, Graff CG, et al. A four-alternative forced choice (4AFC) methodology for evaluating microcalcification detection in clinical full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) systems using an inkjet-printed anthropomorphic phantom. Medical Physics. 2019;46(9):3883–3892. doi: 10.1002/mp.13629
  23. Imran A-A-Z, Bakic PR, Pokrajac DD. Spatial distribution of adipose compartments size, shape and orientation in a CT breast image of a mastectomy specimen. 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). 2015:1–2. doi: 10.1109/SPMB.2015.7405460
  24. Imran A-A-Z, Pokrajac DD, Maidment ADA, Bakic PR. Estimation of adipose compartment volumes in CT images of a mastectomy specimen. Proceedings of the SPIE. 2016;9783. doi: 10.1117/12.2217175
  25. Hoeschen C, Fill U, Zankl M, et al. A high-resolution voxel phantom of the breast for dose calculations in mammography. Radiation protection dosimetry. 2005;114(1–3):406–409. doi: 10.1093/rpd/nch558
  26. Hsu CM, Palmeri ML, Segars WP, Veress AI, Dobbins JT. An analysis of the mechanical parameters used for finite element compression of a high-resolution 3D breast phantom. Medical Physics. 2011;38(10):5756–5770. doi: 10.1118/1.3637500
  27. Hsu CML, Palmeri ML, Segars WP, Veress AI, Dobbins JT. Generation of a suite of 3D computer-generated breast phantoms from a limited set of human subject data. Medical Physics. 2013;40(4). doi: 10.1118/1.4794924
  28. Huang SY, Boone JM, Yang K, et al. The characterization of breast anatomical metrics using dedicated breast CT. Medical Physics. 2011;38(4):2180–2191. doi: 10.1118/1.3567147
  29. Segars WP, Veress AI, Wells JR, et al. Population of 100 realistic, patient-based computerized breast phantoms for multi-modality imaging research. Proceedings of the SPIE. 2014;9033. doi: 10.1117/12.2043868
  30. Erickson DW, Wells JR, Sturgeon GM, et al. Population of 224 realistic human subject-based computational breast phantoms. Medical Physics. 2015;43(1):23–32. doi: 10.1118/1.4937597
  31. Sarno A, Mettivier G, Di Lillo F, et al. Homogeneous vs. patient specific breast models for Monte Carlo evaluation of mean glandular dose in mammography. Physica Medica. 2018;51:56–63. doi: 10.1016/j.ejmp.2018.04.392
  32. Ivanov D, Bliznakova K, Buliev I, et al. Suitability of low density materials for 3D printing of physical breast phantoms. Physics in medicine and biology. 2018;63(17). doi: 10.1088/1361-6560/aad315
  33. Santos JC, Almeida CD, Iwahara A, Peixoto JE. Characterization and applicability of low-density materials for making 3D physical anthropomorphic breast phantoms. Radiation Physics and Chemistry. 2019;164. doi: 10.1016/j.radphyschem.2019.108361
  34. Esposito G, Mettivier G, Bliznakova K, et al. Investigation of the refractive index decrement of 3D printing materials for manufacturing breast phantoms for phase contrast imaging. Physics in medicine and biology. 2019;64(7). doi: 10.1088/1361-6560/ab0670
  35. Bliznakova K, Buliev I, Bliznakov Z. Anthropomorphic Phantoms in Image Quality and Patient Dose Optimization. Philadelphia: IOP Publishing; 2018. doi: 10.1088/2053-2563/aae197
  36. Hernandez AM, Seibert JA, Nosratieh A, Boone JM. Generation and analysis of clinically relevant breast imaging x-ray spectra. Medical Physics. 2017;44(6):2148–2160. doi: 10.1002/mp.12222
  37. Dukov NT, Feradov FN, Gospodinova GD, Bliznakova KS. An Approach for Printing Tissue-mimicking Abnormalities Dedicated to Applications in Breast Imaging. 2019 IEEE XXVIII International Scientific Conference Electronics (ET). 2019:1–4. doi: 10.1109/ET.2019.8878587
  38. Mäder U, Martin F, Karin B, Stephan S. Concept to extend anthropomorphic breast phantoms for 2D digital mammography with movable lesions at variable reproducible positions. 15th International Workshop on Breast Imaging (IWBI2020). 2020. doi: 10.1117/12.2560619
  39. Okoh FO, Kabir NA, Mohd FMY, Siti NAA. Measurement of mass attenuation coefficient of polyvinyl alcohol (PVAL) as breast tissue equivalent material in the photon energy range of 16.61–25.26 keV. Journal of Physics: Conference Series. 2020;1535(1). doi: 10.1088/1742-6596/1535/1/012051
  40. Mainprize JG, Mawdsley GE, Carton A-K, et al. Full-size anthropomorphic phantom for 2D and 3D breast x-ray imaging. Proceedings of the SPIE. 2020;11513:17. doi: 10.1117/12.2560358
  41. Filippou V, Tsoumpas C. Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound. Medical Physics. 2018;45(9):e740–e760. doi: 10.1002/mp.13058
  42. di Franco F, Mettivier G, Sarno A, Varallo A, Russo P. Manufacturing of physical breast phantoms with 3D printing technology for X-ray breast imaging. 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). 2019:1–5. doi: 10.1109/NSS/MIC42101.2019.9059986
  43. Sage J, Fezzani KL, Fitton I, et al. Experimental evaluation of seven quality control phantoms for digital breast tomosynthesis. Physica Medica. 2019;57:137–144. doi: 10.1016/j.ejmp.2018.12.031
  44. Freed M, Badal A, Jennings RJ, et al. X-ray properties of an anthropomorphic breast phantom for MRI and x-ray imaging. Physics in medicine and biology. 2011;56(12):3513–3533. doi: 10.1088/0031-9155/56/12/005
  45. Ruvio G, Solimene R, Cuccaro A, et al. Multimodal Breast Phantoms for Microwave, Ultrasound, Mammography, Magnetic Resonance and Computed Tomography Imaging. Sensors. 2020;20(8):2400. doi: 10.3390/s20082400
  46. Baldelli P, Phelan N, Egan G. Investigation of the effect of anode/filter materials on the dose and image quality of a digital mammography system based on an amorphous selenium flat panel detector. Br J Radiol. 2010;83(988):290–295. doi: 10.1259/bjr/60404532
  47. Park S, Jennings R, Liu H, Badano A, Myers K. A statistical, task-based evaluation method for three-dimensional x-ray breast imaging systems using variable-background phantoms. Medical Physics. 2010;37(12):6253–6270. doi: 10.1118/1.3488910
  48. Taibi A, Fabbri S, Baldelli P, et al. Dual-energy imaging in full-field digital mammography: a phantom study. Physics in medicine and biology. 2003;48(13):1945–1956. doi: 10.1088/0031-9155/48/13/307
  49. Cockmartin L, Marshall N, Bosmans H. Design and Evaluation of a Phantom with Structured Background for Digital Mammography and Breast Tomosynthesis. In: Maidment ADA, Bakic PR, Gavenonis S, editors. Breast Imaging. IWDM 2012. Lecture Notes in Computer Science, vol 7361. Berlin: Springer; 2012. doi: 10.1007/978-3-642-31271-7_83
  50. Baneva Y, Bliznakova K, Cockmartin L, et al. Evaluation of a breast software model for 2D and 3D X-ray imaging studies of the breast. Physica Medica. 2017;41:78–86. doi: 10.1016/j.ejmp.2017.04.024
  51. Bliznakova K. Development of breast software phantom dedicated for research and educational purposes. RAD Association Journal. 2017;2(1):14–19. doi: 10.21175/RadJ.2017.01.004
  52. Marinov S, Carton A-K, Cockmartin L, et al. Evaluation of the visual realism of breast texture phantoms in digital mammography. Proc. SPIE 11513, 15th International Workshop on Breast Imaging (IWBI2020). 2020. doi: 10.1117/12.2564124
  53. Feradov F, Marinov S, Bliznakova K. Physical Breast Phantom Dedicated for Mammography Studies. In: Henriques J, Neves N, de Carvalho P, editors. XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings. 2020;76:344–352. doi: 10.1007/978-3-030-31635-8_41
  54. Bliznakova K, Mettivier G, Russo P, Bliznakov Zh. Validation of a software platform for 2D and 3D phase contrast imaging: preliminary subjective evaluation. 15th International Workshop on Breast Imaging (IWBI2020). 2020:97. doi: 10.1117/12.2564356
  55. Bliznakova K, Mettivier G, Russo P, et al. A software platform for phase contrast x-ray breast imaging research. Comput Biol Med. 2015;61:62–74. doi: 10.1016/j.compbiomed.2015.03.017
  56. Petrov D, Marshall NW, Young KC, Bosmans H. Systematic approach to a channelized Hotelling model observer implementation for a physical phantom containing mass-like lesions: Application to digital breast tomosynthesis. Physica Medica. 2019;58:8–20. doi: 10.1016/j.ejmp.2018.12.033
  57. Mettivier G, Bliznakova K, Sechopoulos I, et al. Evaluation of the BreastSimulator Software Platform for Breast Tomography: Preliminary Results. Physics in Medicine and Biology. 2016;62(16):145–151. doi: 10.1088/1361-6560/aa6ca3
  58. Salomon E, Semturs F, Unger E, et al. Equivalent breast thickness and dose sensitivity of a next iteration 3D structured breast phantom with lesion models. Medical Imaging 2020: Physics of Medical Imaging. 2020. doi: 10.1117/12.2548956
  59. Carton AK, Bakic P, Ullberg C, Derand H, Maidment AD. Development of a physical 3D anthropomorphic breast phantom. Medical Physics. 2011;38(2):891–896. doi: 10.1118/1.3533896
  60. Mainprize JG, Carton A-K, Klausz R, et al. Development of a physical 3D anthropomorphic breast texture model using selective laser sintering rapid prototype printing. Medical Imaging 2018: Physics of Medical Imaging. 2018:9. doi: 10.1117/12.2560358
  61. Li Z, Desolneux A, Muller S, Carton A-K. A Novel 3D Stochastic Solid Breast Texture Model for X-Ray Breast Imaging. In: Tingberg A, Lång K, Timberg P, editors. Breast Imaging. IWDM 2016. Lecture Notes in Computer Science, vol 9699. Springer; 2016. P. 660–667. doi: 10.1007/978-3-319-41546-8_822016
  62. Prionas ND, Burkett GW, McKenney SE, et al. Development of a patient-specific two-compartment anthropomorphic breast phantom. Physics in medicine and biology. 2012;57(13):4293–4307. doi: 10.1088/0031-9155/57/13/4293
  63. Badal A, Clark M, Ghammraoui B. Reproducing two-dimensional mammograms with three-dimensional printed phantoms. Journal of Medical Imaging. 2018;5(3). doi: 10.1117/1.JMI.5.3.033501
  64. Schopphoven S, Cavael P, Bock K, Fiebich M, Mäder U. Breast phantoms for 2D digital mammography with realistic anatomical structures and attenuation characteristics based on clinical images using 3D printing. Physics in medicine and biology. 2019;64(21). doi: 10.1088/1361-6560/ab3f6a
  65. Clark M, Ghammraoui B, Badal A. Reproducing 2D breast mammography images with 3D printed phantoms. Medical Imaging 2016: Physics of Medical Imaging. 2016;9783. doi: 10.1117/12.2217215
  66. Okkalidis N. A novel 3D printing method for accurate anatomy replication in patient-specific phantoms. Medical Physics. 2018;45(10):4600–4606. doi: 10.1002/mp.13154
  67. Daskalov S, Okkalidis N, Boone JM, et al. Anthropomorphic Physical Breast Phantom Based on Patient Breast CT Data: Preliminary Results. In: Henriques J, Neves N, de Carvalho P, editors. XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer; 2020. P. 367–374. doi: 10.1007/978-3-030-31635-8_442020
  68. Kiarashi N, Nolte AC, Sturgeon GM, et al. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data. Medical Physics. 2015;42(7):4116–4126. doi: 10.1118/1.4919771
  69. Lindfors KK, Boone JM, Nelson TR, et al. Dedicated Breast CT: Initial Clinical Experience. Radiology. 2008;246(3):725–733. doi: 10.1148/radiol.2463070410
  70. Burgess AE, Judy PF. Signal detection in power-law noise: effect of spectrum exponents. Journal of the Optical Society of America A. 2007;24(12):B52–B60. doi: 10.1364/JOSAA.24.000B52
  71. Burgess AE, Jacobson FL, Judy PF. Human observer detection experiments with mammograms and power-law noise. Medical Physics. 2001;28(4):419–437. doi: 10.1118/1.1355308
  72. Rossman AH, Catenacci M, Zhao C, et al. Three-dimensionally-printed anthropomorphic physical phantom for mammography and digital breast tomosynthesis with custom materials, lesions, and uniform quality control region. Journal of Medical Imaging. 2019;6(2). doi: 10.1117/1.JMI.6.2.021604
  73. Mettivier G, Sarno A, Boone JM, et al. Virtual clinical trials in 3D and 2D breast imaging with digital phantoms derived from clinical breast CT scans. Medical Imaging 2020: Physics of Medical Imaging. 2020. doi: 10.1117/12.2548224
  74. Mettivier G, Sarno A, di Franco F, et al. The Napoli-Varna-Davis project for virtual clinical trials in X-ray breast imaging. 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). 2019:1–5. doi: 10.1109/NSS/MIC42101.2019.9059828
  75. Ikejimba LC, Graff CG, Rosenthal S, et al. A novel physical anthropomorphic breast phantom for 2D and 3D x-ray imaging. Medical Physics. 2017;44(2):407–416. doi: 10.1002/mp.12062
  76. Mei K, Geagan M, Roshkovan L, et al. Three-dimensional printing of patient-specific lung phantoms for CT imaging: Emulating lung tissue with accurate attenuation profiles and textures. Medical Physics. 2022;49(2):825–835. doi: 10.1002/mp.15407
  77. Ionita CN, Mokin M, Varble N, et al. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. Proceedings of SPIE--the International Society for Optical Engineering. doi: 10.1117/12.2042266
  78. Theodorakou C, Horrocks JA, Marshall NW, Speller RD. A novel method for producing x-ray test objects and phantoms. Physics in medicine and biology. 2004;49(8):1423–1438. doi: 10.1088/0031-9155/49/8/004
  79. Sikaria D, Musinsky S, Sturgeon GM, et al. Second generation anthropomorphic physical phantom for mammography and DBT: Incorporating voxelized 3D printing and inkjet printing of iodinated lesion inserts. Proc. SPIE 9783, Medical Imaging 2016: Physics of Medical Imaging. 2016. doi: 10.1117/12.2217667
  80. Jahnke P, Limberg FR, Gerbl A, et al. Radiopaque Three-dimensional Printing: A Method to Create Realistic CT Phantoms. Radiology. 2017;282(2):569–575. doi: 10.1148/radiol.2016152710
  81. de Sisternes L, Brankov JG, Zysk AM, et al. A computational model to generate simulated three-dimensional breast masses. Medical Physics. 2015;42(2):1098–1118. doi: 10.1118/1.4905232
  82. SUN NUCLEAR. BR3D BREAST IMAGING PHANTOM [Internet] [cited 1 Jan 2023]. Available from: https://www.cirsinc.com/products/mammography/br3d-breast-imaging-phantom/
  83. Piccolomini EL, Morotti E. A Model-Based Optimization Framework for Iterative Digital Breast Tomosynthesis Image Reconstruction. Journal of imaging. 2021;7(2):36. doi: 10.3390/jimaging7020036
  84. Cavicchioli R, Hu JC, Loli Piccolomini E, Morotti E, Zanni L. GPU acceleration of a model-based iterative method for Digital Breast Tomosynthesis. Scientific reports. 2020;10(1):43. doi: 10.1038/s41598-019-56920-y
  85. Gomi T, Kijima Y, Kobayashi T, Koibuchi Y. Evaluation of a Generative Adversarial Network to Improve Image Quality and Reduce Radiation-Dose during Digital Breast Tomosynthesis. Diagnostics. 2022;12(2):495. doi: 10.3390/diagnostics12020495
  86. Cockmartin L, Bosmans H, Marshall NW. Establishing a quality control protocol for dual-energy based contrast-enhanced digital mammography. Proceedings of the SPIE. 2021;11595. doi: 10.1117/12.2581816
  87. Marimón E, Marsden PA, Nait-Charif H, Díaz O. A semi-empirical model for scatter field reduction in digital mammography. Physics in medicine and biology. 2021;66(4). doi: 10.1088/1361-6560/abd231
  88. Silver EH, Shulman SD, Rehani MM. Innovative monochromatic x-ray source for high-quality and low-dose medical imaging. Medical Physics. 2021;48(3):1064–1078. doi: 10.1002/mp.14677

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Types of breast tissue density according to the BI-RADS classification. For each image, the upper part is the craniocaudal projection, the lower part is the mediolateral projection.

Download (284KB)
3. Fig. 2. An algorithm for generating a computational breast phantom.

Download (169KB)
4. Fig. 3. BR3D Breast Imaging Phantom [82].

Download (191KB)
5. Fig. 4. Model 011A by CIRS.

Download (139KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies