Development of a system for automatic analysis of the morphokinetic state of the human embryo

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: The application of videofixation technologies in embryology is developing significantly. These technologies permit the objective analysis of the process of early embryogenesis of each cultured embryo without the necessity of removing the culture cup from the incubator. Timelapse technologies in routine practice allow for the guaranteed detection of embryo developmental pathologies that are inaccessible to traditional developmental monitoring methods [1, 2]. Nevertheless, the annotation and manual evaluation of all frames captured during the cultivation process can be a time-consuming process. Furthermore, video fixation itself does not eliminate the issue of objectivizing the quality of interpretation of the obtained images [3]. Intelligent technologies, in particular, solutions developed with the use of machine learning, are successfully employed in the resolution of such problems.

AIM: The aim of this study is to develop a system for the automated analysis of the morphokinetic state of the human embryo with the aim of assessing its capacity for implantation.

MATERIALS AND METHODS: The data were collected at the Family Medical Center (Ufa, Russia) and the Clinical Hospital IDK of the Mother and Child Group of Companies (Samara, Russia). Digital images of the period of preimplantation development of human embryos up to the blastocyst stage (days 0–6 from insemination) were obtained using an incubator for in vitro fertilization laboratories, the EmbryoVisor, with a timelapse (hyperlapse) video fixation system. Embryos were cultured individually in special micro-well WOW dishes (Vitrolife, Sweden). The data set was labelled using Label Studio Community Edition software. A recurrent convolutional neural network was selected to analyse the data and trained using multiple images.

RESULTS: The development of the automatic analysis system is based on the classification of the morphokinetic state of the embryo according to the stages of embryogenesis: fertilization, fragmentation, morula formation, and blastocyst formation. Segmentation of multiple objects, such as pronuclei and polar bodies at the fertilization stage or blastomeres at the fragmentation stage, will be performed depending on a certain stage of development. We plan to build a binary classification of the presence of additional features (multinucleation, heterogeneity of the endoplasmic network), classification/regression of additional features (so, fragmentation can be estimated as discrete ranges or absolute values). The result is a system for labeling the morphodynamic profile of an embryo using deep learning. This method automates and accelerates the analysis process, which previously required significant time and human resources.

CONCLUSIONS: It is anticipated that the developed system of automatic analysis of morphokinetic state of embryos will simplify the process of evaluating the quality of human embryos in in vitro fertilization laboratories, reducing the time and resources spent on this process. Furthermore, it will enhance the accuracy and reliability of assessing the implantation ability of embryos and could potentially serve as the foundation for the development of a support system for medical decision-making in embryology.

About the authors

Mark G. Kosenko

The First Sechenov Moscow State Medical University

Email: mark.kosenko@mail.ru
ORCID iD: 0000-0003-2467-466X
Russian Federation, Moscow

Gleb B. Nemkovskiy

The First Sechenov Moscow State Medical University; "WESTTRADE LTD" LLC

Author for correspondence.
Email: negleb@yandex.ru
ORCID iD: 0000-0003-1897-1975
SPIN-code: 1481-0704
Russian Federation, Moscow; Moscow

Olesya Yu. Tsvetkova

Moscow Institute of Physics and Technology (National Research University)

Email: olesya.tsvetkovaa@yandex.ru
ORCID iD: 0009-0001-1310-6344
Russian Federation, Dolgoprudny

Ivan D. Akinfeev

"WESTTRADE LTD" LLC; The University of Arizona

Email: negleb@yandex.ru
Russian Federation, Moscow; Tucson, United States of America

Valeriia A. Dolgova

Volgograd State Medical University

Email: doller2000@yandex.ru
ORCID iD: 0000-0003-0260-1670
Russian Federation, Volgograd

References

  1. ESHRE Working group on Time-lapse technology; Apter S, Ebner T, Freour T, et al. Good practice recommendations for the use of time-lapse technology. Human Reproduction Open. 2020;2020(2):1–26. doi: 10.1093/hropen/hoaa008
  2. Shurygina OV, Nemkovskii GB, Belyakov VK. Guidelines for the application of Time-lapse technology in the practice of embryology laboratories "Non-invasive monitoring and analysis of biological objects". Moscow; 2021. (In Russ).
  3. Shurygina O, Nemkovskiy G, Rusakov D, et al. Modern approaches to cultivation and autoanalysis of the morphodynamics of human embryos in vitro. Reproductive Medicine. 2021;(3(48)):33–41. doi: 10.37800/RM.3.2021.35-43

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».