磁共振成像在罕见遗传性疾病(即色素失禁症, 也称布洛赫-苏兹伯格综合征)诊断中的应用: 临床病例

封面图片

如何引用文章

详细

色素失禁症(布洛克-苏兹伯格综合征,Bloch-Sulzberger Syndrome)是一种罕见的遗传性疾病,表现为特征性皮疹以及其他器官和系统的损坏。磁共振成像是显示出大脑结构病变和预测儿童神经系统表现的优先方法。

皮肤科医生在色素失禁症的诊断中起着关键作用;需要通过对IKBKG基因进行分子遗传分析,以确诊。

一名新生女婴患有典型的布洛赫-苏兹伯格综合征皮疹和IKBKG基因缺失,在进行脑磁共振成像检查后,医生发现了多处缺血、出血和传导通路病变。

布洛赫-苏兹伯格综合征患者的脑磁共振成像可用于评估脑物质损坏的严重程度,这有助于解释神经症状的原因、调整康复措施和预测患儿的发展。

作者简介

Igor I. Yarmola

National Medical Research Center for Children's Health

编辑信件的主要联系方式.
Email: lord_dukich@bk.ru
ORCID iD: 0000-0002-1272-5119
SPIN 代码: 5591-8066
俄罗斯联邦, Moscow

Anatoly V. Anikin

National Medical Research Center for Children's Health

Email: anikacor@gmail.com
ORCID iD: 0000-0003-0362-6511
SPIN 代码: 7592-1352

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow

Dmitry A. Gankin

Shchelkovsky Perinatal Center

Email: ganja-nn@yandex.ru
ORCID iD: 0009-0001-6779-8702
俄罗斯联邦, Schelkovo

Lyubov E. Fomina

National Medical Research Center for Children's Health

Email: love.fomina@mail.ru
ORCID iD: 0000-0002-3838-3284
SPIN 代码: 1298-8350
俄罗斯联邦, Moscow

Natalia A. Kharitonova

National Medical Research Center for Children's Health

Email: kharitonovan@nczd.ru
ORCID iD: 0000-0002-6912-1471
SPIN 代码: 7379-8269

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow

Ilya S. Zhanin

National Medical Research Center for Children's Health

Email: zhaninis@nczd.ru
ORCID iD: 0000-0003-1423-0379
SPIN 代码: 6108-2016

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow

Aleksandr A. Pushkov

National Medical Research Center for Children's Health

Email: n1972z@yandex.ru
ORCID iD: 0000-0001-6648-2063
SPIN 代码: 2928-5764

Cand. Sci. (Biol.)

俄罗斯联邦, Moscow

Milana A. Basargina

National Medical Research Center for Children's Health

Email: kharitonovan@nczd.ru
ORCID iD: 0000-0003-2075-6668
SPIN 代码: 5504-7154

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow

Olga B. Kondakova

National Medical Research Center for Children's Health

Email: n1972z@yandex.ru
ORCID iD: 0000-0002-6316-9992
SPIN 代码: 9066-3698

MD, Cand. Sci. (Med.)

俄罗斯联邦, Moscow

参考

  1. Scheuerle AE, Ursini MV, Adam MP, et al. Incontinentia Pigmenti. In: GeneReviews [Internet], Seattle (WA): University of Washington, Seattle; 1993.
  2. Fusco F. Molecular analysis of the genetic defect in a large cohort of IP patients and identification of novel NEMO mutations interfering with NF-B activation. Hum Mol Genet. 2004;13(16):1763–1773. doi: 10.1093/hmg/ddh192
  3. Yadlapati S, Tripathy K. Incontinentia pigmenti (Bloch Sulzberger Syndrome). In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023.
  4. Savostyanov KV. Modern algorithms of genetic diagnosis of rare hereditary diseases in Russian patients. Moscow: Polygraphist Publisher; 2022. 451 р. (In Russ).
  5. Minić S, Cerovac N, Novaković I, et al. The impact of the IKBKG gene on the appearance of the corpus callosum abnormalities in incontinentia pigmenti. Diagnostics. 2023;13(7):1300. doi: 10.3390/diagnostics13071300
  6. Chistiakov DA, Savostanov KV, Kuzenkova LM, et al. Molecular characteristics of patients with glycosaminoglycan storage disorders in Russia. Clin Chim Acta. 2014;(436):112–120. doi: 10.1016/j.cca.2014.05.010
  7. Chistyakov DA, Savostanov KV, Nosikov VV, Turakulov RI. Genetic determinants of Graves’ disease. Mol Gen Metabol. 2000;71(1-2):66–69. doi: 10.1006/mgme.2000.3042
  8. Meuwissen ME, Mancini GM. Neurological findings in incontinentia pigmenti: A review. Eur J Med Genet. 2012;55(5):323–331. doi: 10.1016/j.ejmg.2012.04.007
  9. Carney RG. Incontinentia pigmenti. A world statistical analysis. Arch Dermatol. 1976;112(4):535–542.
  10. Minić S, Trpinac D, Obradović M. Incontinentia pigmenti diagnostic criteria update. Clin Genet. 2014;85(6):536–542. doi: 10.1111/cge.12223
  11. Haque MN, Ohtsubo M, Nishina S, et al. Analysis of IKBKG/NEMO gene in five Japanese cases of incontinentia pigmenti with retinopathy: Fine genomic assay of a rare male case with mosaicism. J Hum Genet. 2021;66(2):645–645. doi: 10.1038/s10038-020-00836-3
  12. Kawai M, Kato T, Tsutsumi M, et al. Molecular analysis of low-level mosaicism of the IKBKG mutation using the X Chromosome Inactivation pattern in Incontinentia Pigmenti. Mol Genet Genomic Med. 2020;8(12):e1531. doi: 10.1002/mgg3.1531
  13. Tak PP, Firestein GS. NF-κB: A key role in inflammatory diseases. J Clin Invest. 2001;107(1):7–11. doi: 10.1172/JCI11830
  14. Kleinman JT. Early Wallerian degeneration on magnetic resonance imaging: Underappreciated but highly relevant. Dev Med Child Neurol. 2013;55(2):104–105. doi: 10.1111/dmcn.12022
  15. Salamon SA, Lichtenbelt K, Cowan FM, et al. Clinical presentation and spectrum of neuroimaging findings in newborn infants with incontinentia pigmenti. Dev Med Child Neurol. 2016;58(10):1076–1084. doi: 10.1111/dmcn.13140
  16. Lou H, Zhang L, Xiao W, et al. Nearly completely reversible brain abnormalities in a patient with incontinentia pigmenti. Am J Neuroradiol. 2008;29(3):431–433. doi: 10.3174/ajnr.A0890
  17. Kinoshita T, Ogawa T, Yoshida Y, et al, Curvilinear T1 hyperintense lesions representing cortical necrosis after cerebral infarction. Neuroradiology. 2005;47(7):647–651. doi: 10.1007/s00234-005-1398-0
  18. Hauw JJ, Perié G, Bonnette J, Escourolle R. [Neuropathological study of incontinentia pigmenti. Anatomical case report (author’s transl). (In French)]. Acta Neuropathol. 1977;38(2):159–162. doi: 10.1007/BF00688564

补充文件

附件文件
动作
1. JATS XML
2. 图1。沿布拉什可氏线扩散的水泡。

下载 (210KB)
3. 图2。大脑弥散加权图像,轴向面:a——箭头指大脑脚的传导通路信号增加;b——胼胝体的多发病灶和病变。

下载 (100KB)
4. 图3。大脑磁共振成像:a——SWI图像(磁敏感加权成像)(箭头指微出血灶);b——T1加权图像(箭头指皮质坏死的高密度区)。

下载 (95KB)

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

##common.cookie##