Tele-ultrasound imaging using smartphones and single-board PCs

Cover Image

Cite item

Abstract

BACKGROUND: Mobile devices are widely available and their computational performance increases. Nonetheless, medicine should not be an exception: single-board computers and mobile phones are crucial aides in telehealth.

AIM: To explore tele-ultrasound scope using smartphones and single-board computers

MATERIALS AND METHODS: This study focused on capturing ultrasound videos using external video recording devices connected via USB. Raspberry Pi single-board computers and Android smartphones have been used as platforms to host a tele-ultrasound server. Used software: VLC, Motion, and USB camera. A remote expert assessment was performed with mobile devices using the following software: VLC acted as a VLC server, Google Chrome for OS Windows 7 and OS Android was used in the remaining scenarios, and Chromium browser was installed on the Raspberry Pi computer.

OUTCOMES: The UTV007 chip-based video capture device produces better images than the AMT630A-based device. The optimum video resolution was 720×576 and 25 frames per second. VLC and OBS studios are considered the most suitable for a raspberry-based ultrasound system owing to low equipment and bandwidth requirements (0.64±0.17 Mbps for VLC; 0.5 Mbps for OBS studio). For Android phone OS, the ultrasound system was set with the USB camera software, although it required a faster network connection speed (5.2±0.3 Mbps).

CONCLUSION: The use of devices based on single-board computers and smartphones implements a low-cost tele-ultrasound system, which potentially improves the quality of studies performed through distance learning and consulting doctors. These solutions can be used in remote regions for “field” medicine tasks and other possible areas of m-health.

About the authors

Kirill M. Arzamasov

Moscow Center for Diagnostics and Telemedicine

Author for correspondence.
Email: ArzamasovKM@zdrav.mos.ru
ORCID iD: 0000-0001-7786-0349
SPIN-code: 3160-8062

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Viktor A. Drogovoz

Scientific and Production Association “Russian Basic Information Technologies”

Email: Vdrog@mail.ru
ORCID iD: 0000-0001-9582-7147
SPIN-code: 1804-2636

Cand. Sci. (Tech.)

Russian Federation, Moscow

Tatiana M. Bobrovskaya

Moscow Center for Diagnostics and Telemedicine

Email: BobrovskayaTM@zdrav.mos.ru
ORCID iD: 0000-0002-2746-7554
SPIN-code: 3400-8575

MD

Russian Federation, Moscow

Anton V. Vladzymyrskyy

Moscow Center for Diagnostics and Telemedicine; The First Sechenov Moscow State Medical University

Email: VladzimirskijAV@zdrav.mos.ru
ORCID iD: 0000-0002-2990-7736
SPIN-code: 3602-7120

MD, Dr. Sci. (Med.)

Russian Federation, Moscow; Moscow

References

  1. Shi J, Wang F, Qin M, et al. New ECG compression method for portable ECG monitoring system merged with binary convolutional auto-encoder and residual error compensation. Biosensors (Basel). 2022;12(7):524. doi: 10.3390/bios12070524
  2. Palacios DR, Shen K, Baig S, et al. Wide field of view handheld smart fundus camera for telemedicine applications. J Med Imaging (Bellingham). 2021;8(2):026001. doi: 10.1117/1.JMI.8.2.026001
  3. Shewale AD, Patil SA, Patil SR. Raspberry-pi based automatic health care modelling: An iOt approach. Compliance Engineering J. 2021;12(3):99–104.
  4. Recker F, Höhne E, Damjanovic D, Schäfer VS. Ultrasound in telemedicine: A brief overview. Appl Sci. 2022;12:958. doi: 10.3390/app12030958
  5. Lim TH, Choi HJ, Kang BS. Feasibility of dynamic cardiac ultrasound transmission via mobile phone for basic emergency teleconsultation. J Telemed Telecare. 2010;5(16):281–285. doi: 10.1258/jtt.2010.091109
  6. Miyashita T, Iketani Y, Nagamine Y, Goto T. FaceTime®for teaching ultrasound-guided anesthetic procedures in remote place. J Cli Monit. Comput. 2014;2(28):211–215. doi: 10.1007/s10877-013-9514-x
  7. Kim C, Cha H, Kang BS, et al. A feasibility study of smartphone-based telesonography for evaluating cardiac dynamic function and diagnosing acute appendicitis with control of the image quality of the transmitted videos. J Digit Imaging. 2016;3(29):347–356. doi: 10.1007/s10278-015-9849-6
  8. Boissin C, Blom L, Wallis L, et al. Image-based teleconsultation using smartphones or tablets: qualitative assessment of medical experts. Emergency Med J. 2017;34(2):95–99. doi: 10.1136/emermed-2015-205258
  9. Beckhauser E, Petrolini VA, Savaris A, et al. Are single-board computers an option for a low-cost multimodal telemedicine platform? First tests in the context of santa catarina state integrated telemedicine and telehealth system. In: Conference: 2016 IEEE 29th International Symposium on Computer-Based Medical Systems (CBMS). 2016. Р. 163–168. doi: 10.1109/CBMS.2016.57
  10. Bhojwani H, Sain GK, Sharma GP. A hybrid connectivity oriented telemedician system for Indian landscape using raspberry Pi SBC & IOT. In: Conference: 2018 3rd Technology Innovation Management and Engineering Science International Conference (TIMES-iCON). 2018. Р. 1–5. doi: 10.1109/TIMES-iCON.2018.8621799
  11. De Oliveira DC, Wehrmeister MA. Using deep learning and low-cost rgb and thermal cameras to detect pedestrians in aerial images captured by multirotor UAV. Sensors (Basel). 2018;7(18):2244. doi: 10.3390/s18072244
  12. Kim W, Jung WS, Choi HK. Lightweight driver monitoring system based on multi-task mobilenets. Sensors (Basel). 2019;14(19):3200. doi: 10.3390/s19143200
  13. Peine A, Hallawa A, Schöffski O, et al. A deep learning approach for managing medical consumable materials in intensive care units via convolutional neural networks: technical proof-of-concept study. JMIR Med Informatics. 2019;4(7):e14806–e14806. doi: 10.2196/14806
  14. Yoo SK, Kim DK, Jung SM, et al. Performance of a web-based, realtime, tele-ultrasound consultation system over high-speed commercial telecommunication lines. J Telemed Telecare. 2004;10(3):175–179. doi: 10.1258/135763304323070841
  15. Panayides A, Antoniou ZC, Mylonas Y, et al. High-resolution, low-delay, and error-resilient medical ultrasound video communication using H.264/AVC over mobile WiMAX networks. IEEE J Biomed Health Inform. 2013;17(3):619–628. doi: 10.1109/TITB.2012.2232675
  16. Arzamasov KM, Bobrovskaya TM, Drogovoz VA. Streaming technology: From games to tele-ultrasound. Digital Diagnostics. 2022;2(3):131–140. (In Russ). doi: 10.17816/DD100779
  17. Arzamasov KM, Drogovoz VA. Systematic review of technologies and methods of tele-ultrasound. Medical Technologies Assessment Choice. 2020;(3):44-54. (In Russ). doi: 10.17116/medtech20204103144
  18. Le MT, Voigt L, Nathanson R, et al. Comparison of four handheld point-of-care ultrasound devices by expert users. Ultrasound J. 2022;14(1):27. doi: 10.1186/s13089-022-00274-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Connection diagram.

Download (243KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies