Nonparametric Algorithm of Identification of Classes Corresponding to Single-mode Fragments of the Probability Density of Multidimensional Random Variables


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A nonparametric algorithm of automatic classification of large arrays of statistical data is considered. Its synthesis is based on decomposition of initial data. The results of decomposition form a set of centers of multidimensional intervals and the corresponding frequencies of occurrence of values of random variables. Based on information obtained, classes corresponding to single-mode fragments of the probability density of features of examined objects are detected. The spatial interpretation of automatic classification results is analyzed. The nonparametric algorithms developed in the study are important tools of processing of data obtained by remote sensing of natural resources.

作者简介

A. Lapko

Institute of Computational Modeling, Siberian Branch; Reshetnev Siberian University of Sciences and Technologies

编辑信件的主要联系方式.
Email: lapko@icm.krasn.ru
俄罗斯联邦, Akademgorodok 50, building 44, Krasnoyarsk, 660036; pr. im. gazety “Krasnoyarskii rabochii” 31, Krasnoyarsk, 660037

V. Lapko

Institute of Computational Modeling, Siberian Branch; Reshetnev Siberian University of Sciences and Technologies

Email: lapko@icm.krasn.ru
俄罗斯联邦, Akademgorodok 50, building 44, Krasnoyarsk, 660036; pr. im. gazety “Krasnoyarskii rabochii” 31, Krasnoyarsk, 660037

S. Im

Sukachev Institute of Forest, Siberian Branch; Reshetnev Siberian University of Sciences and Technologies

Email: lapko@icm.krasn.ru
俄罗斯联邦, Akademgorodok 50, building 28, Krasnoyarsk, 660036; pr. im. gazety “Krasnoyarskii rabochii” 31, Krasnoyarsk, 660037

V. Tuboltsev

Reshetnev Siberian University of Sciences and Technologies

Email: lapko@icm.krasn.ru
俄罗斯联邦, pr. im. gazety “Krasnoyarskii rabochii” 31, Krasnoyarsk, 660037

V. Avdeenok

Reshetnev Siberian University of Sciences and Technologies

Email: lapko@icm.krasn.ru
俄罗斯联邦, pr. im. gazety “Krasnoyarskii rabochii” 31, Krasnoyarsk, 660037

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019