Neural Network Classification of Difficult-to-Distinguish Types of Vegetation on the Basis of Hyperspectral Features


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is experimentally demonstrated that the classification of fragments of a hyperspectral image with preliminary transformation of the spectral features of the image into the principal components and with the use of the Hilbert-Huang spectral transform is fairly effective in the case of vegetation types that are difficult-to-distinguish on the basis of hyperspectra. This classification is compared with traditional methods, where hyperspectral features transformed to the principal components without using spatial information are used. RBF neural networks are used in all methods at the final stage of the classification.

Sobre autores

E. Nezhevenko

Institute of Automation and Electrometry, Siberian Branch

Autor responsável pela correspondência
Email: nejevenko@iae.nsk.su
Rússia, pr. Akademika Koptyuga 1, Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2019