Optical Diagnosis of the Geometry of an Axisymmetric Controlled Nozzle of a Gas-Turbine Engine


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Modern aviation industry solves the problem of developing multifunction engines capable of flying both at subsonic and supersonic speeds. An important part in such engines is a variable area nozzle, which allows varying the geometry of the engine exhaust unit and, accordingly, its technical characteristics. This study touches upon an computer vision based optical noncontact method for reconstructing a nozzle shape. The reconstruction requires data recorded by two optical three-dimensional recorders directed toward the inner part of the nozzle when the engine is subjected to ground tests. The diagnosis is complicated by the presence of a hot jet being in the way of the sensor vision, the regime-dependent variation of the nozzle glow brightness, and intense mechanical vibrations. The performed bench tests confirm the efficiency of the proposed method. According to their results, in a low-gas regime, the standard deviation of the diagnosed diameters of the exhaust unit and critical sections for each frame does not exceed 0.3% of the corresponding sizes. The data obtained as a result of this diagnosis can be taken into account when upgrading the exhaust unit of the engine and the thrust control system of a gas turbine engine.

About the authors

M. P. Tokarev

Kutateladze Institute of Thermophysics; Novosibirsk State University

Author for correspondence.
Email: mtokarev@itp.nsc.ru
Russian Federation, pr. Akademika Lavrentyeva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

A. V. Seredkin

Kutateladze Institute of Thermophysics; Novosibirsk State University

Email: mtokarev@itp.nsc.ru
Russian Federation, pr. Akademika Lavrentyeva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

M. Yu. Khrebtov

Kutateladze Institute of Thermophysics; Novosibirsk State University

Email: mtokarev@itp.nsc.ru
Russian Federation, pr. Akademika Lavrentyeva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

N. P. Petkoglo

A. Lyul’ka Experimental Design Bureau

Email: mtokarev@itp.nsc.ru
Russian Federation, ul. Kasatkina 13, Moscow, 129301

M. Yu. Vovk

A. Lyul’ka Experimental Design Bureau

Email: mtokarev@itp.nsc.ru
Russian Federation, ul. Kasatkina 13, Moscow, 129301

L. M. Chikishev

Kutateladze Institute of Thermophysics; Novosibirsk State University

Email: mtokarev@itp.nsc.ru
Russian Federation, pr. Akademika Lavrentyeva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

V. M. Dulin

Kutateladze Institute of Thermophysics; Novosibirsk State University

Email: mtokarev@itp.nsc.ru
Russian Federation, pr. Akademika Lavrentyeva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

D. M. Markovich

Kutateladze Institute of Thermophysics; Novosibirsk State University

Email: mtokarev@itp.nsc.ru
Russian Federation, pr. Akademika Lavrentyeva 1, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

E. Yu. Marchukov

A. Lyul’ka Experimental Design Bureau

Email: mtokarev@itp.nsc.ru
Russian Federation, ul. Kasatkina 13, Moscow, 129301

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Allerton Press, Inc.