Methods for Obtaining and Using Succinic Acid in the Food Industry: A Scoping Review
- 作者: Babich O.O.1, Kalashnikova O.B.1, Ulrich E.V.2, Sukhikh S.A.1
-
隶属关系:
- Immanuel Kant Baltic Federal University
- Kaliningrad State Technical University
- 期: 卷 2, 编号 2 (2024)
- 页面: 35-47
- 栏目: SCOPING REVIEW
- URL: https://journals.rcsi.science/2949-6497/article/view/353362
- DOI: https://doi.org/10.37442/fme.2024.2.41
- ID: 353362
如何引用文章
全文:
详细
Introduction: Succinic acid is the final metabolite of many microorganisms. It has antioxidant, tonic properties, and also takes part in the metabolic processes of a living organism. Its use in food formulations will help expand the range of functional food products aimed at improving metabolism.Purpose: description of methods for obtaining and features of the use of succinic acid in the food industry for the production of functional foods and biologically active food additives.Materials and Methods: Information search was carried out in the databases Scopus, Web of Science, PubMed, RISC for the period from 01/01/1994 to 03/01/2024. Marketing research reports on the use of succinic acid in the food industry for the period 2016-2023 were also analyzed. The review included review and empirical articles that met the selection criteria in English and Russian. This review of the subject field is based on the PRISMA-ScR protocol.Results: Currently, succinic acid is produced by chemical or biotechnological methods. The most common method is the chemical method (paraffin oxidation, catalytic hydrogenation, maleic acid or maleic anhydride). There is also a biotechnological method based on the cultivation of microorganisms that produce succinic acid. Various organic substrates, including food industry waste, can be used to cultivate microorganisms. It has been shown that succinic acid is included in the list of safe food additives and is used in food production as an acidity regulator. However, due to the fact that it has proven biological effectiveness, succinic acid can be included in the formulations of various food products, thereby providing them with additional functional properties.Conclusion: To introduce the biotechnological method into the real sector of the economy, it is necessary to solve a number of limiting factors. It has been established that succinic acid can be used not only as a traditional food additive (acidity regulator), but also as a dietary supplement. The volumes of production and demand for succinic acid are slowly but increasing, which indicates the need to introduce new technologies for the production of succinic acid in order to meet the demand for this product.
作者简介
Olga Babich
Immanuel Kant Baltic Federal University
编辑信件的主要联系方式.
Email: olich.43@mail.ru
ORCID iD: 0000-0002-4921-8997
SPIN 代码: 2744-9496
Olga Kalashnikova
Immanuel Kant Baltic Federal University
Email: kalashnikova_14@bk.ru
ORCID iD: 0000-0002-6105-8631
SPIN 代码: 4944-3990
Elena Ulrich
Kaliningrad State Technical University
Email: elen.ulrich@mail.ru
ORCID iD: 0000-0003-4107-7277
SPIN 代码: 1900-8057
Stanislav Sukhikh
Immanuel Kant Baltic Federal University
Email: stas-asp@mail.ru
ORCID iD: 0000-0001-7910-8388
SPIN 代码: 1601-6061
参考
Зорин, А.В., Зайнашев, А.Т., Чанышева, А.Р., & Зорин, В.В. (2015). Взаимодействие α-карбанионов ацилатов лития с 1,2-дибромэтаном. Журнал органической химии, 85(6), 914-917. Зорин, А.В., Чанышева, А.Р., & Зорин, В.В. (2016). Синтез янтарной кислоты и ее замещенных производных в реакциях αкарбанионов ацилатов с хлорацетатом натрия. Известия вузов. Химия и химическая технология, 59(10), 19−23. https://doi.org/10.6060/tcct.20165910.5399 Коваленко, А.Л., & Белякова, Н.В. (2000). Янтарная кислота: фармакологическая активность и лекарственные формы. Фармация, 5-6, 40-43. Комаров, А. А., Енгашев, С. В., Енгашева, Е. С., Удавлиев, Д. И., Егоров, М. А., Уша, Б. В., Селимов, Р. Н., & Гламаздин, И. Г. (2021). Амоксициллин и янтарная кислота: Эффективные лекарственные средства для защиты здоровья животных (обзор). Хранение и переработка сельхозсырья, 4, 98-117. https://doi.org/10.36107/spfp.2021.259 Косинец, В. А., Столбицкий, В. В., & Штурич, И. П. (2012). Опыт применения цитофлавина в спортивном питании. Клиническая медицина, 90(7), 56-59. Романова, Н. К. (2017). Сукцинаты - перспективные добавки в технологиях продуктов из растительного сырья. Вестник Казанского технологического университета, 20(16), 128-132. Сапожникова, Т. В., Сапожников, К. В., Парфенов, С. А., Елькин, А. А., Ризаханов, Д. М., & Ризаханова, О. А. (2022). Вегетативный и психический статус пациентов с функциональными заболеваниями ЖКТ. Экспериментальная и клиническая гастроэнтерология, 198(2), 159-168. https://doi.org/10.31146/1682-8658-ecg-198-2-159-168 Степанова, Е.Н., & Табаторович, А.Н. (2010). Возможность использования янтарной кислоты в технологии производства мармелада. Техника и технология пищевых производств, 17(2), 1-6. Столярская, Е.А., Соклаков, В.В., & Воротников, Б.Ю. (2021). Использование янтарной кислоты при производстве обогащённой соковой продукции из фруктов. Вестник молодежной науки, 2(29), 14. Табаторович, А. Н., & Резниченко, И. Ю. (2019). Разработка и оценка качества диабетического желейного мармелада «Каркаде», обогащенного янтарной кислотой. Техника и технология пищевых производств, 49(2), 320-329. https://doi.org/10.21603/2074-9414-2019-2-320-329 Ahn, J. H., Seo, H., Park, W., Seok, J., Lee, J. A., Kim, W. J., Kim, G. B., Kim, K.J., & Lee, S. Y. (2020). Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase. Nature communications, 11(1), 1970. https://doi.org/10.1038/s41467-020-15839-z Alexandri, M., Kachrimanidou, V., Papapostolou, H., Papadaki, A., & Kopsahelis, N. (2022). Sustainable food systems: The case of functional compounds towards the development of clean label food products. Foods (Basel, Switzerland), 11, 2796. https://doi.org/10.3390/foods11182796 Carvalho, M., Roca, C., & Reis, M. A. (2016). Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods. Bioresource Technology, 218, 491-497. https://doi.org/10.1016/j.biortech.2016.06.140 Chen, C., & Zheng, P. (2023). New insights into the biosynthesis of succinic acid by actinobacillus succinogenes with the help of its engineered strains. Fermentation, 9(12), 1026. https://doi.org/10.3390/fermentation9121026 Cok, B., Tsiropoulos, I., Roes, A. L., & Patel, M. K. (2014). Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bio‐based economy. Biofuels, Bioproducts and Biorefining, 8(1), 16-29. Contreras-Ruiz, A., Alonso-del-Real, J., Barrio, E., & Querol, A. (2023). Saccharomyces cerevisiae wine strains show a wide range of competitive abilities and differential nutrient uptake behavior in co-culture with S. kudriavzevii. Food Microbiology, 114, 104276. https://doi.org/10.1016/j.fm.2023.104276 Deng, W., Feng Y., Fu J., Guo H., Guo Y., Han B., Jiang Z., Kong L., Li C., Liu H., Nguyen P. T. T., Ren P., Wang F., Wang S., Wang Y., Wang Y., Wong S. S., Yan K., Yan N., Yang X., Zhang Y., Zhang Z., Zeng X. & Zhou H. (2023). Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy & Environment, 8, 1. https://doi.org/10.1016/j.gee.2022.07.003 Escanciano, I. A., Wojtusik, M., Esteban, J., Ladero, M., & Santos, V. E. (2022). Modeling the succinic acid bioprocess: A review. Fermentation, 8(8), 368. https://doi.org/10.3390/fermentation8080368 Gao, C., Yang, X., & Wang, H. (2016). Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnol Biofuels, 9, 179. https://doi.org/10.1186/s13068-016-0597-8 Gonzales, T.A., de Carvalho Silvello, M.A., Duarte, E.R., Santos, L.O., Alegre, R.M., & Goldbeck, R. (2020). Optimization of anaerobic fermentation of Actinobacillus succinogenes for increase the succinic acid production. Biocatalysis and agricultural biotechnology, 27, 101718. Grimolizzi, F., & Arranz, L. (2018). Multiple faces of succinate beyond metabolism in blood. Haematologica, 103(10), 1586. Guo, F., Wu, M., Zhang, S., Feng, Y., Jiang, Y., Jiang, W., Xin, F., Zhang, W. & Jiang, M. (2022). Improved succinic acid production through the reconstruction of methanol dissimilation in Escherichia coli. Bioresources and Bioprocessing, 9(1), 62. https://doi.org/10.1186/s40643-022-00547-x He, Y., Huang, W., Zhang, C., Chen, L., Xu, R., Li, N., Wang, F., Li, H., Yang, M., & Zhang, D. (2021). Energy metabolism disorders and potential therapeutic drugs in heart failure. Acta Pharmaceutica Sinica B, 11(5), 1098-1116. https://doi.org/10.1016/j.apsb.2020.10.007 Iragavarapu, G. P., Imam, S. S., Sarkar, O., Mohan, S. V., Chang, Y. C., Reddy, M. V., Kim, S. H., Amradi, N. K., & Amradi, N. K. (2023). Bioprocessing of Waste for Renewable Chemicals and Fuels to Promote Bioeconomy. Energies, 16(9), 3873. https://doi.org/10.3390/en16093873 Júnior, A. I. M., Soccol, C. R., Camara, M. C., Aulestia, D. T. M., de Souza Vandenberghe, L. P., & de Carvalho, J. C. (2021). Challenges in the production of second-generation organic acids (potential monomers for application in biopolymers). Biomass and Bioenergy, 149, 106092. https://doi.org/10.1016/j.biombioe.2021.106092 Kumar, R., Basak, B., & Jeon, B. H. (2020). Sustainable production and purification of succinic acid: A review of membrane-integrated green approach. Journal of Cleaner Production, 277, 123954. https://doi.org/10.1016/j.jclepro.2020.123954 Li, C., Ong, K. L., Cui, Z., Sang, Z., Li, X., Patria, R. D., & Lin, C. S. K. (2021). Promising advancement in fermentative succinic acid production by yeast hosts. Journal of Hazardous Materials, 401, 123414. Li, C., Ong, K. L., Cui, Z., Sang, Z., Li, X., Patria, R. D., Qi, Q., Fickers, P., Yan, J., & Lin, C. S. K. (2021). Promising advancement in fermentative succinic acid production by yeast hosts. Journal of Hazardous Materials, 401, 123414. https://doi.org/10.1016/j.jhazmat.2020.123414 Li, C., Ong, K. L., Cui, Z., Sang, Z., Li, X., Patria, R. D., Qi, Q., Fickers, P., Yan, J., Lin, & C. S. K. (2021). Promising advancement in fermentative succinic acid production by yeast hosts. Journal of Hazardous Materials, 401, 123414. https://doi.org/10.1016/j.jhazmat.2020.123414 Li, C., Ong, K. L., Yang, X., & Lin, C. S. K. (2019). Bio-refinery of waste streams for green and efficient succinic acid production by engineered Yarrowia lipolytica without pH control. Chemical Engineering Journal, 371, 804-812. https://doi.org/10.1016/j.cej.2019.04.092 Li, Q., Siles, J.A. & Thompson, I.P. (2010). Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85. Applied Microbiology and Biotechnology, 88, 671–678. https://doi.org/10.1007/s00253-010-2726-9 Lieshchova, M. A., Bilan, M. V., Bohomaz, A. A., Tishkina, N. M., & Brygadyrenko V. V. (2020). Effect of succinic acid on the organism of mice and their intestinal microbiota against the background of excessive fat consumption. Regulatory Mechanisms in Biosystems, 11 (2), 153-161. https://doi.org/10.15421/022023 Liu, H., Song, Y., Fan, X., Wang, C., Lu, X., & Tian, Y. (2021). Yarrowia lipolytica as an oleaginous platform for the production of value-added fatty acid-based bioproducts. Frontiers in Microbiology, 11, 608662. Liu, J., Liu, J., Guo, L., Liu, J., Chen, X., Liu, L., & Gao, C. (2022). Advances in microbial synthesis of bioplastic monomers. In Advances in Applied Microbiology (vol. 119, pp. 35-81). Academic Press. https://doi.org/10.1016/bs.aambs.2022.05.002 Liu, X., Zhao, G., Sun, S., Fan, C., Feng, X., & Xiong, P. (2022). Biosynthetic pathway and metabolic engineering of succinic acid. Frontiers in Bioengineering and Biotechnology, 10, 843887. https://doi.org/10.3389/fbioe.2022.843887 Liu, X., Zhao, G., Sun, S., Fan, C., Feng, X., & Xiong, P. (2022). Biosynthetic pathway and metabolic engineering of succinic acid. Frontiers in Bioengineering and Biotechnology, 10, 843887. Louasté, B., & Eloutassi, N. (2020). Succinic acid production from whey and lactose by Actinobacillus succinogenes 130Z in batch fermentation. Biotechnology Reports, 27, e00481. Matthews, C., Crispie, F., Lewis, E., Reid, M., O'Toole, P. W., & Cotter, P. D. (2019). The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut microbes, 10(2), 115–132. https://doi.org/10.1080/19490976.2018.1505176 Mitrea, L., Teleky, B. E., Nemes, S. A., Plamada, D., Varvara, R. A., Pascuta, M. S., Ciont, C., Cocean, A., Medeleanu, M., Nistor, A., Rotar A., Pop, C. R., & Vodnar, D. C. (2024). Succinic acid–A run-through of the latest perspectives of production from renewable biomass. Heliyon. https://doi.org/10.1016/j.heliyon.2024.e25551 Mitrea, L., Teleky, B.-E., Nemes, S.-A., Plamada D., Varvara, R.-A., Pascuta, M.-S., Ciont, C., Cocean, A.-M., Medeleanu, M., Nistor, A., Rotar, A.-M., Pop, C.-R., & Vodnar, D.-C. (2024). Succinic acid – A run-through of the latest perspectives of production from renewable biomass. Heliyon, 10(3), e25551. https://doi.org/10.1016/j.heliyon.2024.e25551 Narisetty, V., Okibe, M. C., Amulya, K., Jokodola, E. O., Coulon, F., Tyagi, V. K., Lens, P. N. L., Parameswaran, B., & Kumar, V. (2022). Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production. Bioresource technology, 360, 127513. https://doi.org/10.1016/j.biortech.2022.127513 Nghiem, N. P., Kleff, S., & Schwegmann, S. (2017). Succinic acid: technology development and commercialization. Fermentation, 3(2), 26. https://doi.org/10.3390/fermentation3020026 Omwene, P. I., Yağcıoğlu, M., Öcal-Sarihan, Z. B., Ertan, F., Keris-Sen, Ü. D., Karagunduz, A., & Keskinler, B. (2021). Batch fermentation of succinic acid from cheese whey by Actinobacillus succinogenes under variant medium composition. 3 Biotech, 11(8), 389. https://doi.org/10.1007/s13205-021-02939-w Perez-Zabaleta, M. (2019). Metabolic engineering and cultivation strategies for recombinant production of (R)-3-hydroxybutyrate. KTH Royal Institute of Technology. Prabhu, A. A., Ledesma-Amaro, R., Lin, C. S. K., Coulon, F., Thakur V. K., & Kumar, V. (2020). Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control. Biotechnol Biofuels, 13, 113. https://doi.org/10.1186/s13068-020-01747-3 Sadare, O. O., Ejekwu, O., Moshokoa, M. F., Jimoh, M. O., & Daramola, M. O. (2021). Membrane purification techniques for recovery of succinic acid obtained from fermentation broth during bioconversion of lignocellulosic biomass: Current advances and future perspectives. Sustainability, 13(12), 6794. https://doi.org/10.3390/su13126794 Salma, A., Djelal, H., Abdallah, R., Fourcade, F., & Amrane, A. (2021). Platform molecule from sustainable raw materials; case study succinic acid. Brazilian Journal of Chemical Engineering, 38(2), 215-239. ff10.1007/s43153-021-00103-8ff Shi, Y., Pu, D., Zhou, X., & Zhang, Y. (2022). Recent progress in the study of taste characteristics and the nutrition and health properties of organic acids in foods. Foods, 11(21), 3408. https://doi.org/10.3390/foods11213408 Show, P. L., Oladele, K. O., Siew, Q. Y., Zakry, F. A. A., Lan, J. C.-W., & Ling, T. C. (2015). Overview of citric acid production from Aspergillus niger. Frontiers in Life Science, 8(3), 271-283, https://doi.org/10.1080/21553769.2015.1033653 Song, H., & Lee, S. Y. (2006). Production of succinic acid by bacterial fermentation. Enzyme and Microbial Technology, 39(3), 352-361. https://doi.org/10.1016/j.enzmictec.2005.11.043 Thuy, N. T. H., Kongkaew, A., Flood, A., & Boontawan, A. (2017). Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate. Bioresource Technology, 233, 342-352. https://doi.org/10.1016/j.biortech.2017.02.114 Tosato, M., Ciciarello, F., Zazzara, M. B., Pais, C., Savera, G., Picca, A., Galluzzo, V., Coelho-Júnior, H. J., Calvani, R., Marzetti, E., Landi, F., & Gemelli A. (2022). Covid-19 post-acute care team. nutraceuticals and dietary supplements for older adults with long Covid-19. Clinics in Geriatric Medicine, 38(3), 565–591. https://doi.org/10.1016/j.cger.2022.04.004 Upton, D. J., McQueen-Mason, S. J., & Wood, A. J. (2017). An accurate description of Aspergillus Niger organic acid batch fermentation through dynamic metabolic modelling. Biotechnology for Biofuels, 10, 258. https://doi.org/10.1186/s13068-017-0950-6 Wahl, S. A., Bernal Martinez, C., Zhao, Z., van Gulik, W. M., & Jansen, M. L. (2017). Intracellular product recycling in high succinic acid producing yeast at low pH. Microbial Cell Factories, 16, 1-13. Wan, C., Li, Y., Shahbazi, A., & Xiu, S. (2008). Succinic acid production from cheese whey using Actinobacillus succinogenes 130 Z. In Biotechnology for fuels and chemicals: proceedings of the twenty-ninth symposium on biotechnology for fuels and chemicals (pp. 111-119). Humana Press. Yin, G., Sun, Z., Wang, Z., Xia, Y., Cheng, L., Qin, G., Aschalew, N. D., Liu, H., Zhang, X., Wu, Q., Zhang, W., Zhao, W., Wang, T., & Zhen, Y. (2024). Mechanistic insights into inositol-mediated rumen function promotion and metabolic alteration using in vitro and in vivo models. Frontiers in Veterinary Science, 11, 1359234. https://doi.org/10.3389/fvets.2024.1359234 Zheng, P., Dong, J. J., Sun, Z. H., Ni, Y., & Fang, L. (2009). Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresource Technology, 100(8), 2425-2429. https://doi.org/10.1016/j.biortech.2008.11.043
补充文件

