Prospects for the use of probiotic organisms to develop alternative strategies for disinfection and prevention of infectious diseases
- 作者: Kishilova S.A.1
-
隶属关系:
- All-Russian Dairy Research Institute
- 期: 卷 1, 编号 3 (2023)
- 页面: 66-84
- 栏目: SCOPING REVIEW
- URL: https://journals.rcsi.science/2949-6497/article/view/352429
- DOI: https://doi.org/10.37442/fme.2023.3.23
- ID: 352429
如何引用文章
全文:
详细
Introduction: An important feature of microorganisms is the ability to adapt to adverse external influences, including the development of multiple antimicrobial resistance, leading to such negative consequences for humans as nosocomial infections, problems with cleaning rooms, medical and industrial equipment. The active use of chemical disinfectants for high-quality disinfection and cleaning has a number of disadvantages, including the risks of pathogens with new mechanisms of resistance to antimicrobial agents. The search for new, effective and safe antimicrobial agents as an alternative to chemical disinfectants is relevant. The use of probiotic strains of microorganisms, including lactic acid bacteria, in this capacity may be a promising area of research.Objective: to analyze the literature data on studies of the potential of probiotic organisms, including lactic acid bacteria, to develop alternative disinfection and prevention strategies.Materials and methods: This review of the subject field has been prepared based on the guiding principles of PRISMA-ScR. SCOPUS, Google Scholar, and RSCI databases were used. The works in Russian and English were considered, for the period 1995-2023.Results: The review included 89 articles exploring the disadvantages of traditional disinfection methods and the search for alternative sanitation strategies. The description of various solutions for the introduction of probiotic purification methods is systematized – using bacteriophages, probiotic microorganisms of R. Bacillus and representatives of lactic acid bacteria as active agents.Conclusions: A system of sanitary measures based on probiotic biodesinfectants, including lactic acid bacteria, can be included among the tools for countering pathogens, including their biofilms and forms with multidrug resistance. The introduction of a probiotic hygienic cleaning system, without having a negative impact on the environment, can increase the effectiveness of traditional hygienic preventive measures both in medical institutions and in production.
作者简介
Svetlana Kishilova
All-Russian Dairy Research Institute
编辑信件的主要联系方式.
Email: s.a.kishilova@gmail.com
ORCID iD: 0009-0000-9498-4757
参考
Варганов, В. А. (2008). Стабилизаторы «СТМ». Актуальные вопросы переработки мясного и молочного сырья, (3), 206–213. Виноградова, Ю. В. (2018). Теоретические и практические аспекты процесса кристаллизации лактозы в производстве сгущенных молочных консервов с сахаром. Молочнохозяйственный вестник, 3(31), 79–90. Галстян, А. Г., Илларионова, Е. Е., Радаева, И. А., Туровская, С. Н., Червецов, В. В., Петров, А. Н. (2012). Новый национальный стандарт на вареное сгущенное молоко с сахаром. Молочная промышленность, (8), 36–37. Гнездилова, А. И., Куренкова, Л. А. (2014). Реологические характеристики консервированного молочного продукта со сложным углеводным составом. Молочнохозяйственный вестник, 1(13), 56–63. Голубева, Л. В., Пожидаева, Е. А., Матвиенко, А. А. (2020). Формирование состава молокосодержащих консервов с сахаром. Актуальные вопросы молочной промышленности, межотраслевые технологии и системы управления качеством, 1(1), 130–133. https://doi.org/10.37442/978-5-6043854-1-8-2020-1-130-133 Косова, И. А. (2010). Молокосодержащий продукт «Мастер Сгущёнов». Молочная промышленность, (10), 54–55. Писарева, Е. В. (2016). Исследование стабилизационных систем для сгущенных молочных консервов. Ползуновский вестник, (1), 29–33. Радаева, И. А. Гордезиани, В. С., Шулькина, С. П. (1986). Технология молочных консервов и заменителей цельного молока: Справочник. Агропромиздат. Радаева, И. А., Илларионова, Е. Е., Туровская, С. Н. (2020). К вопросу изучения микроструктурных изменений молочных консервов в процессе длительного хранения. Инновационные технологии обработки и хранения сельскохозяйственного сырья и пищевых продуктов: Сборник научных трудов ученых и специалистов к 90-летию ВНИХИ (с. 445–452). Амирит. Рябова, А. Е., Галстян, А. Г., Малова, Т. И., Радаева, И. А., Туровская, С. Н. (2014). К вопросу о гетерогенной кристаллизации лактозы в технологиях сгущенных молочных продуктов с сахаром. Техника и технология пищевых производств, 1(32), 78–83. Рябова, А. Е., Хуршудян, С. А., Семипятный, В. К. (2018). Совершенствование методологии оценки консистенции продуктов, склонных к спонтанной кристаллизации сахаров. Пищевая промышленность, 12, С. 74-76. Туровская, С. Н., Галстян, А. Г., Петров, А. Н., Радаева, И. А., Илларионова, Е. Е., Семипятный, В. К., Хуршудян, С. А. (2018). Безопасность молочных консервов как интегральный критерий эффективности их технологии. Российский опыт. Пищевые системы, 2(1), 29–54. https://doi.org/10.21323/2618-9771-2018-1-2-29-54 Фатьянов, Е. В., Царьков, И. В., Тё, Р. Е. (2011). Влияние водных растворов углеводов на активность воды. Молочная промышленность, (12), 52–53. Червецов, В. В., Гнездилова, А. И. (2011). Интенсификация процессов кристаллизации при производстве молочных продуктов. Россельхозакадемия. Arbuckle, W. S. (1986). Ice cream (4th ed.). Springer Science+Business Media. https://doi.org/10.1007/978-1-4615-7222-0 Bayarri, S., González-Tomás, L., & Costell, E. (2009). Viscoelastic properties of aqueous and milk systems with carboxymethyl cellulose. Food Hydrocolloids, 23(2), 441–450. https://doi.org/10.1016/j.foodhyd.2008.02.002 Ben Said, L., Gaudreau, H., Dallaire, L., Tessier, & M., Fliss, I. (2019). Bioprotective culture: A new generation of food additives for the preservation of food quality and safety. Industrial Biotechnology, 15(3), 138–147. https://doi.org/10.1089/ind.2019.29175.lbs Das, D., Linn, S., Sormoli, M. E., & Langrish, T. A. G. (2013). The effects of WPI and Gum Arabic inhibition on the solid-phase crystallisation kinetics of lactose at different concentrations. Food Research International, 54(1), 318–323. https://doi.org/10.1016/j.foodres.2013.07.038 Fakhreeva, A. V., Gusakov, V. N., Voloshin, A. I., Tomilov, Y. V., Nifant’ev, N. E., & Dokichev, V. A. (2016). Effect of sodium-carboxymethylcellulose on inhibition of scaling by calcium carbonate and sulfate. Russian Journal of Applied Chemistry, 89(12), 1955–1959. https://doi.org/10.1134/s1070427216120053 Gao, X., Guo, C., Hao, J., Zhao, Z., Long, H., & Li, M. (2020). Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. International Journal of Biological Macromolecules, 164, 4423–4434. https://doi.org/10.1016/j.ijbiomac.2020.09.046 Ghorbani Gorji, E., Waheed, A., Ludwig, R., Toca-Herrera, J. L., Schleining, G., & Ghorbani Gorji, S. (2018). Complex Coacervation of Milk Proteins with Sodium Alginate. Journal of Agricultural and Food Chemistry, 66(12), 3210–3220. https://doi.org/10.1021/acs.jafc.7b03915 Keogh, M. K., Lainé, K. I., & O’Connor, J. F. (1996). Rheology of sodium caseinate-carrageenan mixtures. Journal of Texture Studies, 26(6), 635–652. https://doi.org/10.1111/j.1745-4603.1996.tb00987.x Malkaj, P., Pierri, E., & Dalas, E. (2005). The crystallization of Hydroxyapatite in the presence of sodium alginate. Journal of Materials Science: Materials in Medicine, 16(8), 733–737. https://doi.org/10.1007/s10856-005-2610-9 Pirsa, S., & Hafezi, K. (2023). Hydrocolloids: Structure, preparation method, and application in food industry. Food Chemistry, 399, 133967. https://doi.org/10.1016/j.foodchem.2022.133967 Portnoy, M., & Barbano, D. M. (2021). Lactose: Use, measurement, and expression of results. Journal of Dairy Science, 104(7), 8314–8325. https://doi.org/10.3168/jds.2020-18706 Prajapati, V. D., Jani, G. K., Moradiya, N. G., Randeria, N. P., Nagar, B. J., Naikwadi, N. N., & Variya, B. C. (2013). Galactomannan: A versatile biodegradable seed polysaccharide. International Journal of Biological Macromolecules, 60, 83–92. https://doi.org/10.1016/j.ijbiomac.2013.05.017 Sánchez-García, Y. I., Gutiérrez-Méndez, N., Salmerón, I., Ramos-Sánchez, V. H., Leal-Ramos, M. Y., & Sepúlveda, D. R. (2021). Mutarotation and solubility of lactose as affected by carrageenans. Food Research International, 142, 110204. https://doi.org/10.1016/j.foodres.2021.110204 Smykov, I., Gnezdilova, A., Vinogradova, Y., Muzykantova, A., & Lyamina, A. (2019). Cooling curve in production sweetened concentrated milk supplemented with whey: Influence on the size and microstructure of lactose crystals. Food Science and Technology International, 25(6), 451–461. https://doi.org/10.1177/1082013219830494 Sutton, R. L., & Wilcox, J. (1998). Recrystallization in model ice cream solutions as affected by stabilizer concentration. Journal of Food Science, 63(1), 9–11. https://doi.org/10.1111/j.1365-2621.1998.tb15663.x Takeuchi, H., Yasuji, T., Yamamoto, H., & Kawashima, Y. (2000). Temperature- and Moisture-Induced Crystallization of Amorphous Lactose in Composite Particles with Sodium Alginate Prepared by Spray-Drying. Pharmaceutical Development and Technology, 5(3), 355–363. https://doi.org/10.1081/pdt-100100551 Varganov, V. A. (2008). Stabilizers "STM". Actual issues of processing of meat and dairy raw materials, (3), 206-213. Vinogradova, Y. V. (2018). Theoretical and practical aspects of the process of lactose crystallization in the production of condensed canned milk with sugar. Molochnokhozyaystvenny vestnik, 3(31), 79-90. Galstyan, A. G., Illarionova, E. E., Radaeva, I. A., Turovskaya, S. N., Chervetsov, V. V., Petrov, A. N. (2012). New national standard for boiled condensed milk with sugar. Dairy Industry, (8), 36-37. Gnezdilova, A. I., Kurenkova, L. A. (2014). Rheological characteristics of canned milk product with complex carbohydrate composition. Molochnokhozhivniy vestnik, 1(13), 56-63. Golubeva, L. V., Pozhidaeva, E. A., Matvienko, A. A. (2020). Formation of the composition of milk-containing canned products with sugar. Actual issues of the dairy industry, intersectoral technologies and quality management systems, 1(1), 130-133. https://doi.org/10.37442/978-5-6043854-1-8-2020-1-130-133 Kosova, I. A. (2010). Milk-containing product "Master Sguschenov". Dairy Industry, (10), 54-55. Krupennikova, V. E., Radnaeva, V. D., Tanganov, B. B. (2011). Determination of dynamic viscosity on the Brookfield RVDV-II+ Pro rotational viscometer. Methodical instruction. VSGTU. Pisareva, E. V. (2016). Study of stabilization systems for condensed milk canned products. Polzunovsky vestnik, (1), 29-33. Radaeva, I. A. Gordeziani, V. S., Shulkina, S. P. (1986). Technology of canned milk and whole milk substitutes: Reference book. Agropromizdat. Radaeva, I. A., Illarionova, E. E., Turovskaya, S. N. (2020). To the question of studying microstructural changes of canned milk in the process of long-term storage. Innovative technologies of processing and storage of agricultural raw materials and food products: Collection of scientific works of scientists and specialists to the 90th anniversary of VNIHI (pp. 445-452). Amirit. Ryabova, A. E., Galstyan, A. G., Malova, T. I., Radaeva, I. A., Turovskaya, S. N. (2014). To the question of heterogeneous crystallization of lactose in technologies of condensed milk products with sugar. Technics and technology of food production, 1(32), 78-83. Ryabova, A. E., Khurshudyan, S. A., Semipyatny, V. K. (2018). Improvement of methodology for assessing the consistency of products prone to spontaneous crystallization of sugars. Food Industry, 12, P. 74-76. Turovskaya, S. N., Galstyan, A. G., Petrov, A. N., Radaeva, I. A., Illarionova, E. E., Semipyatny, V. K., Khurshudyan, S. A. (2018). Safety of canned milk as an integral criterion of the efficiency of their technology. Russian experience. Food Systems, 2(1), 29-54. https://doi.org/10.21323/2618-9771-2018-1-2-29-54 Fatyanov, E. V., Tsarkov, I. V., Tyo, R. E. (2011). Effect of aqueous solutions of carbohydrates on water activity. Dairy Industry, (12), 52-53. Chervetsov, V. V., Gnezdilova, A. I. (2011). Intensification of crystallization processes in the production of dairy products. Rosselkhozakademia. Arbuckle, W. S. (1986). Ice Cream. https://doi.org/10.1007/978-1-4615-7222-0 Bayarri, S., González-Tomás, L., & Costell, E. (2009). Viscoelastic properties of aqueous and milk systems with carboxymethyl cellulose. Food Hydrocolloids, 23(2). 441–450. https://doi.org/10.1016/j.foodhyd.2008.02.002 Ben Said, L., Gaudreau, H., Dallaire, L., Tessier, & M., Fliss, I. (2019). Bioprotective culture: A new generation of food additives for the preservation of food quality and safety. Industrial Biotechnology, 15(3), 138–147. https://doi.org/10.1089/ind.2019.29175.lbs Das, D., Linn, S., Sormoli, M. E., & Langrish, T. A. G. (2013). The effects of WPI and Gum Arabic inhibition on the solid-phase crystallisation kinetics of lactose at different concentrations. Food Research International, 54(1), 318–323. https://doi.org/10.1016/j.foodres.2013.07.038 Fakhreeva, A. V., Gusakov, V. N., Voloshin, A. I., Tomilov, Y. V., Nifant’ev, N. E., & Dokichev, V. A. (2016). Effect of sodium-carboxymethylcellulose on inhibition of scaling by calcium carbonate and sulfate. Russian Journal of Applied Chemistry, 89(12), 1955–1959. https://doi.org/10.1134/s1070427216120053 Gao, X., Guo, C., Hao, J., Zhao, Z., Long, H., & Li, M. (2020). Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives. International Journal of Biological Macromolecules, 164, 4423–4434. https://doi.org/10.1016/j.ijbiomac.2020.09.046 Ghorbani Gorji, E., Waheed, A., Ludwig, R., Toca-Herrera, J. L., Schleining, G., & Ghorbani Gorji, S. (2018). Complex Coacervation of Milk Proteins with Sodium Alginate. Journal of Agricultural and Food Chemistry, 66(12), 3210–3220. https://doi.org/10.1021/acs.jafc.7b03915 Keogh, M. K., Lainé, K. I., & O’Connor, J. F. (1996). Rheology of sodium caseinate-carrageenan mixtures. Journal of Texture Studies, 26(6), 635–652. https://doi.org/10.1111/j.1745-4603.1996.tb00987.x Malkaj, P., Pierri, E., & Dalas, E. (2005). The crystallization of Hydroxyapatite in the presence of sodium alginate. Journal of Materials Science: Materials in Medicine, 16(8), 733–737. https://doi.org/10.1007/s10856-005-2610-9 Pirsa, S., & Hafezi, K. (2023). Hydrocolloids: Structure, preparation method, and application in food industry. Food Chemistry, 399, 133967. https://doi.org/10.1016/j.foodchem.2022.133967 Portnoy, M., & Barbano, D. M. (2021). Lactose: Use, measurement, and expression of results. Journal of Dairy Science, 104(7), 8314–8325. https://doi.org/10.3168/jds.2020-18706 Prajapati, V. D., Jani, G. K., Moradiya, N. G., Randeria, N. P., Nagar, B. J., Naikwadi, N. N., & Variya, B. C. (2013). Galactomannan: A versatile biodegradable seed polysaccharide. International Journal of Biological Macromolecules, 60, 83–92. https://doi.org/10.1016/j.ijbiomac.2013.05.017 Sánchez-García, Y. I., Gutiérrez-Méndez, N., Salmerón, I., Ramos-Sánchez, V. H., Leal-Ramos, M. Y., & Sepúlveda, D. R. (2021). Mutarotation and solubility of lactose as affected by carrageenans. Food Research International, 142, 110204. https://doi.org/10.1016/j.foodres.2021.110204 Smykov, I., Gnezdilova, A., Vinogradova, Y., Muzykantova, A., & Lyamina, A. (2019). Cooling curve in production sweetened concentrated milk supplemented with whey: Influence on the size and microstructure of lactose crystals. Food Science and Technology International, 25(6), 451–461. https://doi.org/10.1177/1082013219830494 Sutton, R. L., & Wilcox, J. (1998). Recrystallization in model ice cream solutions as affected by stabilizer concentration. Journal of Food Science, 63(1), 9–11. https://doi.org/10.1111/j.1365-2621.1998.tb15663.x Takeuchi, H., Yasuji, T., Yamamoto, H., & Kawashima, Y. (2000). Temperature- and Moisture-Induced Crystallization of Amorphous Lactose in Composite Particles with Sodium Alginate Prepared by Spray-Drying. Pharmaceutical Development and Technology, 5(3), 355–363. https://doi.org/10.1081/pdt-100100551
补充文件

