Исследование влияния ультрафиолетового излучения на физико-механические и структурные характеристики биоразлагаемого полимерного материала на основе полилактида и поли(бутиленадипат-ко-терефталата) при компостном хранении
- Авторы: Мяленко Д.М.1, Федотова О.Б.1, Агарков А.А.1
-
Учреждения:
- Всероссийский научно-исследовательский институт молочной промышленности ("ВНИМИ")
- Выпуск: Том 1, № 4 (2023)
- Страницы: 28-38
- Раздел: ОРИГИНАЛЬНОЕ ЭМПИРИЧЕСКОЕ ИССЛЕДОВАНИЕ
- URL: https://journals.rcsi.science/2949-6497/article/view/352945
- DOI: https://doi.org/10.37442/fme.4.27
- ID: 352945
Цитировать
Полный текст
Аннотация
Введение: Использование биоразлагаемой упаковки в качестве альтернативы упаковки из традиционных полимерных материалов, позволит сократить количество синтетических полимеров, что приведет к уменьшению негативного воздействия на окружающую среду. Исследования в этом направлении, в основном, направлены на анализ скорости деградации таких материалов, при этом влияние внешних факторов на разлагаемые пластики, таких как облучение, тепловая или ультразвуковая обработка, перед закладкой их на компостное хранение изучена недостаточно. Цель: Изучение влияния ультрафиолетового (УФ) излучения на изменения физико-механических и морфологических свойств композиции биоразлагаемого компаундного материала на основе полилактида (PLA) и поли(бутиленадипат-ко-терефталата) (PBAT) при компостном лабораторном хранении.Материалы и методы: Объектами исследований были выбраны полимерные биоразлагаемые пленки на основе смеси PLA и PBAT. Изменение прочностных показателей проводили по ГОСТ 14236-2017. Размер частиц определяли методом светлого поля на микроскопе Axio Lab. A1 с оптикой Axiocam 105 color. Регистрация ИК-спектров проведена на макромодуле ИК-Фурье спектрометра-микроскопа Bruker Lumos (Германия). Анализ поверхности образцов проведен на растровом электронном микроскопе Vega 3 (Tescan, Чехия).Результаты: Облучение материала перед помещением в грунт приводит к ускорению процесса деградации: на 23,3% быстрее уменьшается прочность при разрыве материала и на 70,0% уменьшается прочность сварных швов. Анализ структуры поверхности материала после 120 суток хранения в компосте показал ее существенные изменения: на поверхности наблюдались многочисленные трещины, уходящие в глубь материала практически по всей поверхности. Выводы: Полученные данные по изменению структуры поверхности исследуемых образцов после воздействия на них УФ излучения свидетельствует о динамично протекающих процессах разложения, что создает реальную перспективу минимизации экологических рисков в сегменте охраны окружающей среды, связанной с утилизацией упаковки.
Ключевые слова
Об авторах
Дмитрий Михайлович Мяленко
Всероссийский научно-исследовательский институт молочной промышленности ("ВНИМИ")
Автор, ответственный за переписку.
Email: d_myalenko@vnimi.org
ORCID iD: 0000-0002-6342-7218
Ольга Борисовна Федотова
Всероссийский научно-исследовательский институт молочной промышленности ("ВНИМИ")
Email: o_fedotova@vnimi.org
ORCID iD: 0000-0002-7348-6019
Александр Александрович Агарков
Всероссийский научно-исследовательский институт молочной промышленности ("ВНИМИ")
Email: a_agarkov@vnimi.org
ORCID iD: 0000-0001-7259-4256
SPIN-код: 8058-8865
Список литературы
арифулина, Л.И., Ли, Н. И., Гарипов, Р. М., & Миннахметова, А. К. (2019). Биоразложение полимерных пленочных материалов (обзор). Вестник Технологического Университета, 22(1), 47–53. Заиков, Г.Е. (2000). Почему стареют полимеры. Соросовский образовательный журнал, 12, 48–55. Кобзева, Т.В., & Юрова, Е. А. (2016). Оценка показателей качества и идентификационных характеристик сухого молока. Молочная промышленность, 3, 32–35. Кручинин, А.Г., Илларионова, Е.Е., Туровская, С.Н., & Бигаева, А. В. (2023). Исследование влияния белкового профиля на структурно-механические параметры молочных биосистем с промежуточной влажностью. Food Processing Industry, 1, 59–62. https://doi.org/10.52653/PPI.2023.1.1.017 Ольхов, А.А. (2015). Перспективные биоматериалы на основе полигидроксибутирата и двойного этиленпропиленовогосополимера для транспорта физиологических сред: фазовая структура. Перспективные материалы, 10, 56–63. Пряничникова, Н.С. (2020a). Защитные покрытия для пищевых продуктов. Современные достижения биотехнологии. Техника, технологии и упаковка для реализации инновационных проектов на предприятиях пищевой и биотехнологической промышленности (том 2, с. 86–89). Пятигорск. Пряничникова, Н.С. (2020b). Съедобная упаковка: транспорт для функциональных и биоактивных соединений. Молочная Река, 4(80), 32–34. Радаева, И.А., Радаева, И. А., Илларионова, Е. Е., Туровская, С. Н., Рябова, А. Е., & Галстян, А. Г. (2019). Принципы обеспечения качества отечественного сухого молока. Пищевая промышленность, 9, 54–57. http://doi.org/10.24411/0235–2486-2019–10145 Саликов П.Ю. (2014). Пиролизная утилизация использованных изделий из полиэтилентерефталата. Экология и промышленность России, 3, 16–20. Фильчакова С. А. (2008). Санитария и гигиена на предприятиях молочной промышленности. ДеЛи принт. Фильчакова, С.А. (2008). Микробиологическая чистота упаковки для молочных продуктов. Молочная промышленность, 7, 44–46. Юрова, Е.А. (2019). Оценка качества и хранимоспособности молочных продуктов функциональной направленности. Milk Branch Magazine, 10, 6–11. https://doi.org/ 10.33465/2222–5455-2019–10-6–10 Юрова, Е.А. (2020). Особенность определения содержания витамина Е (токоферолов) в молочных продуктах функциональной направленности. Продовольственная безопасность, 12, 36–39. http://doi.org/10.24411/0235–2486-2020–10141 Ailes, A., & Abigail, N. M. (2013). Expanding bioplastics: Sustainable business innovation in the chemical industry. Journal of Cleaner Production 45, 38–49. https://doi.org/10.1016/j.jclepro.2012.05.008 Aversa, C., Barletta, M., Cappiello, G., & Gisario, A. (2022). Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review. European Polymer Journal, 173, 111304. https://doi.org/10.1016/J.EURPOLYMJ.2022.111304 Barron, A., & Sparks, T. D. (2020). Commercial marine-degradable polymers for flexible packaging. IScience, 23(8). https://doi.org/10.1016/J.ISCI.2020.101353 Bocchini, S., Fukushima, K., Blasio, A. Di, Fina, A., Frache, A., & Geobaldo, F. (2010). Polylactic acid and polylactic acid-based nanocomposite photooxidation. Biomacromolecules, 11(11), 2919–2926. https://doi.org/10.1021/bm1006773 Brdlík, P., Borůvka, M., Běhálek, L., & Lenfeld, P. (2022). The influence of additives and environment on biodegradation of PHBV biocomposites. Polymers, 14(4), 838. https://doi.org/10.3390/polym14040838 Dammak, M., Fourati, Y., Tarrés, Q., Delgado-Aguilar, M., Mutjé, P., & Boufi, S. (2020). Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Industrial Crops and Products, 144, 112061. https://doi.org/10.1016/J.INDCROP.2019.112061 Dilkes-Hoffman, L. S., Lant, P. A., Laycock, B., & Pratt, S. (2019). The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. Marine Pollution Bulletin, 142, 15–24. https://doi.org/10.1016/J.MARPOLBUL.2019.03.020 Dobrov, E. N., Arbieva, Z. K., Timofeeva, E. K., Esenaliev, R. O., Oraevsky, A. A., & Nikogosyan, D. N. (1989). UV Laser induced rna-protein crosslinks and rna chain breaks in tobacco mosaic virus RNA in situ. Photochemistry and Photobiology, 49(5), 595–598. https://doi.org/10.1111/j.1751–1097.1989.tb08429.x Gardette, M., Thérias, S., Gardette, J.-L., Murariu, M., & Dubois, P. (2011). Photooxidation of polylactide/calcium sulphate composites. Polymer Degradation and Stability, 96(4), 616–623. https://doi.org/10.1016/j.polymdegradstab.2010.12.023 Gewert, B., Plassmann, M., Sandblom, O., & Macleod, M. (2018). Identification of chain scission products released to water by plastic exposed to ultraviolet light. Environmental Science and Technology Letters, 5(5), 272–276. https://doi.org/10.1021/acs.estlett.8b00119 Janczak, K., Dąbrowska, G. B., Raszkowska-Kaczor, A., Kaczor, D., Hrynkiewicz, K., & Richert, A. (2020). Biodegradation of the plastics PLA and PET in cultivated soil with the participation of microorganisms and plants. International Biodeterioration & Biodegradation, 155, 105087. https://doi.org/10.1016/J.IBIOD.2020.105087 Janorkar, A. V., Metters, A. T., & Hirt, D. E. (2007). Degradation of poly(L-lactide) films under ultraviolet-induced photografting and sterilization conditions. Journal of Applied Polymer Science, 106(2), 1042–1047. https://doi.org/10.1002/app.24692 Jian, J., Xiangbin, Z., & Xianbo, H. (2020). An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)–PBAT. Advanced Industrial and Engineering Polymer Research, 3(1), 19–26. https://doi.org/10.1016/J.AIEPR.2020.01.001 Kale, G., Auras, R., & Singh, S. P. (2007). Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions. Packaging Technology and Science, 20(1), 49–70. https://doi.org/10.1002/PTS.742 Kale, G., Auras, R., Singh, S. P., & Narayan, R. (2007). Biodegradability of polylactide bottles in real and simulated composting conditions. Polymer Testing, 26(8), 1049–1061. https://doi.org/10.1016/j.polymertesting.2007.07.006 Kalita, N. K., Bhasney, S. M., Mudenur, C., Kalamdhad, A., & Katiyar, V. (2020). End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions. Chemosphere, 247, 125875. https://doi.org/10.1016/J.CHEMOSPHERE.2020.125875 Kiruthika, A. V. (2022). PHBV based blends and composites. In Biodegradable Polymers, blends and composites (pp. 283–308). Elsevier. https://doi.org/10.1016/B978–0-12–823791-5.00008–9 Lee, J., Maddipatla, M. V. S. N., Joy, A., & Vogt, B. D. (2014). Kinetics of UV irradiation induced chain scission and cross-linking of coumarin-containing polyester ultrathin films. Macromolecules, 47(9), 2891–2898. Lunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers . Polym. Degrad. Stab., 59, 145–152. https://doi.org/10.1016/S0141–3910(97)00148–1 Miranda, T. M. R., Gonçalves, A. R., & Amorim, M. T. P. (2001). Ultraviolet-induced crosslinking of poly(vinyl alcohol) evaluated by principal component analysis of FTIR spectra. Polymer International, 50(10), 1068–1072. https://doi.org/10.1002/pi.745 Oster, G., Oster, G. K., & Moroson, H. (1959). Ultraviolet induced crosslinking and grafting of solid high polymers. Journal of Polymer Science, 34(127), 671–684. https://doi.org/10.1002/pol.1959.1203412744 Ponjavic, M., Malagurski, I., Lazic, J., Jeremic, S., Pavlovic, V., Prlainovic, N., Maksimovic, V., Cosovic, V., Atanase, L. I., Freitas, F., Matos, M., & Nikodinovic-Runic, J. (2023). Advancing PHBV biomedical potential with the incorporation of bacterial biopigment prodigiosin. International Journal of Molecular Sciences, 24(3), 1906. https://doi.org/10.3390/ijms24031906 Puchalski, M., Szparaga, G., Biela, T., Gutowska, A., Sztajnowski, S., & Krucińska, I. (2018). Molecular and supramolecular changes in Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) copolymer during degradation in various environmental conditions. Polymers, 10(3), 251. https://doi.org/10.3390/POLYM10030251 Reichert, C. L., Bugnicourt, E., Coltelli, M. B., Cinelli, P., Lazzeri, A., Canesi, I., Braca, F., Martínez, B. M., Alonso, R., Agostinis, L., Verstichel, S., Six, L., De Mets, S., Gómez, E. C., Ißbrücker, C., Geerinck, R., Nettleton, D. F., Campos, I., Sauter, E., Pieczyk, P., Schmid, M. (2020). Bio-based packaging: Materials, modifications, industrial applications and sustainability. Polymers, 12(7), 1558. https://doi.org/10.3390/POLYM12071558 Tertyshnaya, Y. V., & Podzorova, M. V. (2020). Effect of UV irradiation on the structural and dynamic characteristics of polylactide and its blends with polyethylene. Russian Journal of Physical Chemistry B, 14(1), 167–175. https://doi.org/10.1134/S1990793120010170 Van den Oever, M., & Molenveld, K. (2017). Replacing fossil based plastic performance products by bio-based plastic products — Technical feasibility. New Biotechnology, 37, 48–59. https://doi.org/10.1016/j.nbt.2016.07.007 Van Velzen at all. (2016). Recycling efficiency of used plastic packaging. Proceedings of the 32nd International Conference of the Society for the Processing of Polymers, Lyon, France. The Digital Book of Abstracts. Wang, L., Xu, J., Zhang, M., Zheng, H., & Li, L. (2022). Preservation of soy protein-based meat analogues by using PLA/PBAT antimicrobial packaging film. Food Chemistry, 380, 132022. https://doi.org/10.1016/j.foodchem.2021.132022 Weng, Y. X., Jin, Y. J., Meng, Q. Y., Wang, L., Zhang, M., & Wang, Y. Z. (2013). Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polymer Testing, 32(5), 918–926. https://doi.org/10.1016/J.POLYMERTESTING.2013.05.001 Yousif, B. F. (2013). Editorial for SI: Materials, design and tribology. Materials & Design, 48, 1. https://doi.org/10.1016/j.matdes.2013.01.009 Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene: Review. SpringerPlus, 2(1), 1–32. https://doi.org/10.1186/2193–1801-2–398/FIGURES/49
Дополнительные файлы


