Ферментативный способ производства биоактивных пептидов из молочного белкового сырья: обзор предметного поля
- Авторы: Кручинин А.Г.1, Большакова Е.И.1
-
Учреждения:
- Всероссийский научно-исследовательский институт молочной промышленности (ФГАНУ «ВНИМИ»)
- Выпуск: Том 1, № 3 (2023)
- Страницы: 47-65
- Раздел: ОБЗОРНАЯ СТАТЬЯ
- URL: https://journals.rcsi.science/2949-6497/article/view/352428
- DOI: https://doi.org/10.37442/fme.2023.3.24
- ID: 352428
Цитировать
Полный текст
Аннотация
Введение: На протяжении 14 лет интерес к использованию молочного сырья для производства биологически активных пептидов (БАП) с антигипертензивным, антиоксидантным и антидиабетическим действием находился в фазе стремительного роста по причине необходимости профилактики различных заболеваний. На сегодняшний день особое внимание уделяется ферментативному способу производства, так как он позволяет направленно осуществлять процесс высвобождения БАП с заданными свойствами.Целью данного обзора предметного поля являлось обобщение и систематизация опыта международных исследований за последние 14 лет в области ферментативного гидролиза как способа высвобождения БАП из молочного сырья.Материалы и методы: Данный обзор предметного поля был выполнен в соответствии с руководством PRISMA-ScR. Поиск научных трудов был осуществлен в базе данных Google Scholar, так как она позволяет осуществлять поиск научных источников без ограничений по их формату и виду представления научных данных (книга, диссертация, статья), а также включает в себя научные источники из других баз данных и производит сортировку по релевантности.Результаты: При поиске было выявлено 72 источника, опубликованных с 2007 по 2021 гг. на английском языке. Отобранные работы посвящены вопросам гидролиза микробными протеазами (МП) – 50%, и коммерческими ферментными препаратами (КФП) – 50%.Выводы: Существует ряд задач, решение которых необходимо для повышения уровня коммерциализации научных данных о процессе производства БАП посредством направленного гидролиза. Создание новых баз данных; наращивание исследовательской базы по совместной ферментации микроорганизмами и коммерческими ферментами; определение генов протеаз методом ПЦР позволят повысить практическую применимость исследований и обоснованность проведения бóльшего количества доказательных in vivo и клинических исследований.
Об авторах
Александр Геннадьевич Кручинин
Всероссийский научно-исследовательский институт молочной промышленности (ФГАНУ «ВНИМИ»)
Автор, ответственный за переписку.
Email: a_kruchinin@vnimi.org
ORCID iD: 0000-0002-3227-8133
SPIN-код: 7930-1023
Екатерина Ивановна Большакова
Всероссийский научно-исследовательский институт молочной промышленности (ФГАНУ «ВНИМИ»)
Email: e_bolshakova@vnimi.org
ORCID iD: 0000-0002-8427-0387
SPIN-код: 9732-9017
Список литературы
Abd El-Salam, M. H., El-Shibiny, S. (2015). Preparation, properties, and uses of enzymatic milk protein hydrolysates. Critical Reviews in Food Science and Nutrition, 57(6), 1119–1132. https://doi.org/10.1080/10408398.2014.899200 Adjonu, R., Doran, G., Torley, P., Agboola, S. (2013). Screening of whey protein isolate hydrolysates for their dual functionality: Influence of heat pre-treatment and enzyme specificity. Food Chemistry, 136(3–4), 1435–1443. https://doi.org/10.1016/j.foodchem.2012.09.053 Agarkova, E., Kruchinin, A., Zolotaryov, N., Pryanichnikova, N., Belyakova, Z., Fedorova, T. (2020). Processing cottage cheese whey components for functional food production. Foods and Raw Materials, 8(1), 52–59. https://doi.org/10.21603/2308-4057-2020-1-52-59 Agyei, D., He, L. (2015). Evaluation of cross-linked enzyme aggregates of Lactobacillus cell-envelope proteinases, for protein degradation. Food and Bioproducts Processing, 94, 59–69. https://doi.org/10.1016/j.fBP.2015.01.004 Agyei, D., Lim, W., Zass, M., Tan, D., Danquah, M. K. (2013). Bioanalytical evaluation of Lactobacillus delbrueckii subsp. lactis 313 cell-envelope proteinase extraction. Chemical Engineering Science, 95, 323–330. https://doi.org/10.1016/j.ces.2013.03.049 Ahn, J.E., Park, S.Y., Lee, B.H. (2007) Optimization of Whey-Based Medium for Growth and ACE-Inhibitory Activity of Lactobacillus brevis. Korean Journal of Dairy Science and Biotechnology, 25(1), 1-7. Ahtesh, F. B., Stojanovska, L., Apostolopoulos, V. (2017). Processing and sensory characteristics of a fermented low-fat skim milk drink containing bioactive antihypertensive peptides, a functional milk product. International Journal of Dairy Technology, 71, 230–239. https://doi.org/10.1111/1471-0307.12479 Augustin, M. A., Udabage, P. (2007). Influence of processing on functionality of milk and dairy proteins. In Advances in Food and Nutrition Research (pp. 1–38). Elsevier. http://dx.doi.org/10.1016/s1043-4526(07)53001-9 Bamdad, F., Bark, S., Kwon, C. H., Suh, J.-W., Sunwoo, H. (2017). Anti-Inflammatory and Antioxidant Properties of Peptides Released from β-Lactoglobulin by High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis. Molecules, 22(6), 949. https://doi.org/10.3390/molecules22060949 Cheison, S. C., Bor, E. K., Faraj, A. K., Kulozik, U. (2012). Selective hydrolysis of α-lactalbumin by Acid Protease A offers potential for β-lactoglobulin purification in whey proteins. LWT, 49(1), 117–122. https://doi.org/10.1016/j.lwt.2012.03.022 Cimino, C. V., Colombo, M. L., Liggieri, C., Bruno, M., Vairo-Cavalli, S. (2015). Partial Molecular Characterization o Arctium minus Aspartyl Endopeptidase and Preparation of Bioactive Peptides by Whey Protein Hydrolysis. Journal of Medicinal Food, 18(8), 856–864. https://doi.org/10.1089/jmf.2014.0101 Daliri, E. B.-M., Lee, B. H., Park, B.-J., Kim, S.-H., Oh, D.-H. (2018). Antihypertensive peptides from whey proteins fermented by lactic acid bacteria. Food Science and Biotechnology, 27(6), 1781–1789. https://doi.org/10.1007/s10068-018-0423-0 de Castro, R. J. S., & Sato, H. H. (2014). Advantages of an acid protease from Aspergillus oryzae over commercial preparations for production of whey protein hydrolysates with antioxidant activities. Biocatalysis and Agricultural Biotechnology, 3(3), 58–65. https://doi.org/10.1016/j.bcab.2013.11.012 Donkor, O. N., Henriksson, A., Vasiljevic, T., Shah, N. P. (2007). Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Le Lait, 87(1), 21–38. https://doi.org/10.1051/lait:2006023 Farrokhi, F., Badii, F., Ehsani, M. R., & Hashemi, M. (2020). Effect of pH-dependent fibrillar structure on enzymatic hydrolysis and bioactivity of nanofibrillated whey protein. LWT, 131, 109709. https://doi.org/10.1016/j.lwt.2020.109709 Fernández-Fernández, A. M., Dumay, E., López-Pedemonte, T., Medrano-Fernandez, A. (2018). Bioaccessibility and cell metabolic activity studies of antioxidant low molecular weight peptides obtained by ultrafiltration of lactalbumin enzymatic hydrolysates. Food and Nutrition Sciences, 09(09), 1047–1065. https://doi.org/10.4236/fns.2018.99077 Fernández-Fernández, A. M., López-Pedemonte, T., Medrano-Fernandez, A. (2017). Evaluation of Antioxidant, Antiglycant and ACE-Inhibitory Activity in Enzymatic Hydrolysates of α-Lactalbumin. Food and Nutrition Sciences, 08(01), 84–98. https://doi.org/10.4236/fns.2017.81006 Gjorgievski, N., Tomovska, J., Dimitrovska, G., Makarjoski, B., Shariati, M.A. (2014). Determination of the antioxidant activity in yogurt. Journal of Hygienic Engineering and Design, 8, 67-73. Gonzalez-Gonzalez, C., Gibson, T., Jauregi, P. (2013). Novel probiotic-fermented milk with angiotensin I-converting enzyme inhibitory peptides produced by Bifidobacterium bifidum MF 20/5. International Journal of Food Microbiology, 167(2), 131–137. https://doi.org/10.1016/j.ijfoodmicro.2013.09.002 Gonzalez-Gonzalez, C. R., Tuohy, K. M., Jauregi, P. (2011). Production of angiotensin-I-converting enzyme (ACE) inhibitory activity in milk fermented with probiotic strains: Effects of calcium, pH and peptides on the ACE-inhibitory activity. International Dairy Journal, 21(9), 615–622. https://doi.org/10.1016/j.idairyj.2011.04.001 Guo, M. (2019). Whey protein production, chemistry, functionality, and applications. Gútiez, L., Gómez-Sala, B., Recio, I., del Campo, R., Cintas, L. M., Herranz, C., Hernández, P. E. (2013). Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk. International Journal of Food Microbiology, 166(1), 93–101. https://doi.org/10.1016/j.ijfoodmicro.2013.06.019 Hafeez, Z., Cakir-Kiefer, C., Girardet, J.-M., Jardin, J., Perrin, C., Dary, A., Miclo, L. (2013). Hydrolysis of milk-derived bioactive peptides by cell-associated extracellular peptidases of Streptococcus thermophilus. Applied Microbiology and Biotechnology, 97(22), 9787–9799. https://doi.org/10.1007/s00253-013-5245-7 Hayes, M., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2007). Putting microbes to work: Dairy fermentation, cell factories and bioactive peptides. Part I: Overview. Biotechnology Journal, 2(4), 426–434. https://doi.org/10.1002/biot.200600246 Hebert, E. M., Mamone, G., Picariello, G., Raya, R. R., Savoy, G., Ferranti, P., Addeo, F. (2008). Characterization of the Pattern of α s1 - And β-Casein Breakdown and Release of a Bioactive Peptide by a Cell Envelope Proteinase from Lactobacillus delbrueckii subsp. lactis CRL 581. Applied and Environmental Microbiology, 74(12), 3682–3689. https://doi.org/10.1128/aem.00247-08 Hidalgo, M. E., Folmer Côrrea, A. P., Mancilla Canales, M., Joner Daroit, D., Brandelli, A., Risso, P. (2015). Biological and physicochemical properties of bovine sodium caseinate hydrolysates obtained by a bacterial protease preparation. Food Hydrocolloids, 43, 510–520. https://doi.org/10.1016/j.foodhyd.2014.07.009 Kamau, S. M., Lu, R.-R., Chen, W., Liu, X.-M., Tian, F.-W., Shen, Y., Gao, T. (2010). Functional significance of bioactive peptides derived from milk proteins. Food Reviews International, 26(4), 386–401. https://doi.org/10.1080/87559129.2010.496025 Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2), 177–187. https://doi.org/10.1016/j.jff.2009.01.007 Lacroix, I. M. E., & Li-Chan, E. C. Y. (2012). Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. International Dairy Journal, 25(2), 97–102. https://doi.org/10.1016/j.idairyj.2012.01.003 Le Maux, S., Nongonierma, A. B., Barre, C., FitzGerald, R. J. (2016). Enzymatic generation of whey protein hydrolysates under pH-controlled and non pH-controlled conditions: Impact on physicochemical and bioactive properties. Food Chemistry, 199, 246–251. https://doi.org/10.1016/j.foodchem.2015.12.021 Le Maux, S., Nongonierma, A. B., FitzGerald, R. J. (2017). Peptide composition and dipeptidyl peptidase IV inhibitory properties of β-lactoglobulin hydrolysates having similar extents of hydrolysis while generated using different enzyme-to-substrate ratios. Food Research International, 99, 84–90. https://doi.org/10.1016/j.foodres.2017.05.012 Le Maux, S., Nongonierma, A. B., Murray, B., Kelly, P. M., FitzGerald, R. J. (2015). Identification of short peptide sequences in the nanofiltration permeate of a bioactive whey protein hydrolysate. Food Research International, 77, 534–539. https://doi.org/10.1016/j.foodres.2015.09.012 Li-jun, L., Chuan-he, Z., & Zheng, Z. (2008). Analyzing molecular weight distribution of whey protein hydrolysates. Food and Bioproducts Processing, 86(1), 1–6. https://doi.org/10.1016/j.fБП.2007.10.007 López-Fandiño R., Otte J., Camp J. van (2006). Physiological, chemical and techno-logical aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity. International Dairy Journal, 11 (16), 1277–1293. Lorenzetti, A., Penha, F. M., Cunha Petrus, J. C., Rezzadori, K. (2020). Low purity enzymes and ultrasound pretreatment applied to partially hydrolyze whey protein. Food Bioscience, 38, 100784. https://doi.org/10.1016/j.fbio.2020.100784 Madureira, A. R., Tavares, T., Gomes, A. M. P., Pintado, M. E., Malcata, F. X. (2010). Invited review: Physiological properties of bioactive peptides obtained from whey proteins. Journal of Dairy Science, 93(2), 437–455. https://doi.org/10.3168/jds.2009-2566 Mann, B., Athira, S., Sharma, R., Kumar, R., Sarkar, P. (2019). Bioactive peptides from whey proteins. In Whey Proteins (pp. 519–547). Elsevier. http://dx.doi.org/10.1016/b978-0-12-812124-5.00015-1 Mazorra-Manzano, M. A., Mora-Cortes, W. G., Leandro-Roldan, M. M., González-Velázquez, D. A., Torres-Llanez, M. J., Ramírez-Suarez, J. C., González-Córdova, A. F., Vallejo-Córdoba, B. (2020). Production of whey protein hydrolysates with angiotensin-converting enzyme-inhibitory activity using three new sources of plant proteases. Biocatalysis and Agricultural Biotechnology, 28, 101724. https://doi.org/10.1016/j.bcab.2020.101724 Mazorra-Manzano, M. A., Robles-Porchas, G. R., González-Velázquez, D. A., Torres-Llanez, M. J., Martínez-Porchas, M., García-Sifuentes, C. O., González-Córdova, A. F., Vallejo-Córdoba, B. (2020). Cheese whey fermentation by its native microbiota: Proteolysis and bioactive peptides release with ace-inhibitory activity. Fermentation, 6(1), 19. https://doi.org/10.3390/fermentation6010019 Miclo, L., Roux, É., Genay, M., Brusseaux, É., Poirson, C., Jameh, N., Perrin, C., & Dary, A. (2012). Variability of Hydrolysis of β-, αs1-, and αs2-Caseins by 10 Strains of Streptococcus thermophilus and Resulting Bioactive Peptides. Journal of Agricultural and Food Chemistry, 60(2), 554–565. https://doi.org/10.1021/jf202176d Monari, S., Ferri, M., Russo, C., Prandi, B., Tedeschi, T., Bellucci, P., Zambrini, A. V., Donati, E., Tassoni, A. (2019). Enzymatic production of bioactive peptides from scotta, an exhausted by-product of ricotta cheese processing. PLOS ONE, 14(12), e0226834. https://doi.org/10.1371/journal.pone.0226834 Morais, H. A., Silvestre, M. P. C., Silva, M. R., Silva, V. D. M., Batista, M. A., Simões e Silva, A. C., Silveira, J. N. (2013). Enzymatic hydrolysis of whey protein concentrate: Effect of enzyme type and enzyme:substrate Ratio on peptide profile. Journal of Food Science and Technology, 52(1), 201–210. https://doi.org/10.1007/s13197-013-1005-z Morales García, J., Herrera‐Rocha, F., Cavajalino, A. S., Duran Baron, R., González Barrios, A. F., Udenigwe, C. C. (2021). Effects of processing conditions on hydrolysates of proteins from whole whey and formation of Maillard reaction products. Journal of Food Processing and Preservation, 45(9). https://doi.org/10.1111/jfpp.15469 Naik, L., Mann, B., Bajaj, R., Sangwan, R. B., Sharma, R. (2013). Process optimization for the production of bio-functional whey protein hydrolysates: Adopting response surface methodology. International Journal of Peptide Research and Therapeutics, 19(3), 231–237. https://doi.org/10.1007/s10989-012-9340-x Nongonierma, A. B., FitzGerald, R. J. (2017). Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins. Analytical and Bioanalytical Chemistry, 410(15), 3407–3423. https://doi.org/10.1007/s00216-017-0793-9 Nongonierma, A. B., Gaudel, C., Murray, B. A., Flynn, S., Kelly, P. M., Newsholme, P., FitzGerald, R. J. (2013). Insulinotropic properties of whey protein hydrolysates and impact of peptide fractionation on insulinotropic response. International Dairy Journal, 32(2), 163–168. https://doi.org/10.1016/j.idairyj.2013.05.014 Noren, N.E. (2015). Creation of a sticky coating of dairy proteins containing bioactive peptides to reduce dental caries. Oh, N. S., Lee, J. Y., Oh, S., Joung, J. Y., Kim, S. G., Shin, Y. K., Lee, K.-W., Kim, S. H., Kim, Y. (2016). Improved functionality of fermented milk is mediated by the synbiotic interaction between Cudrania tricuspidata leaf extract and Lactobacillus gasseri strains. Applied Microbiology and Biotechnology, 100(13), 5919–5932. https://doi.org/10.1007/s00253-016-7414-y O’Keeffe, M. B., FitzGerald, R. J. (2015). Identification of short peptide sequences in complex milk protein hydrolysates. Food Chemistry, 184, 140–146. https://doi.org/10.1016/j.foodchem.2015.03.077 Ortiz-Chao, P., Gómez-Ruiz, J. A., Rastall, R. A., Mills, D., Cramer, R., Pihlanto, A., Korhonen, H., Jauregi, P. (2009). Production of novel ACE inhibitory peptides from β-lactoglobulin using Protease N Amano. International Dairy Journal, 19(2), 69–76. https://doi.org/10.1016/j.idairyj.2008.07.011 Pa’ee, K. F., Gibson, T., Marakilova, B., Jauregi, P. (2015). Production of acid whey hydrolysates applying an integrative process: Effect of calcium on process performance. Process Biochemistry, 50(2), 302–310. https://doi.org/10.1016/j.procbio.2014.11.011 Panayotova, T., Pashova-Baltova, K., Dimitrov, Z. (2018). Production of ACE-inhibitory peptides in milk fermented with selected lactic acid bacteria. Journal of BioScience and Biotechnology. 7(1), 31-37. Park, Y. W., Nam, M. S. (2015). Bioactive Peptides in Milk and Dairy Products: A Review. Korean journal for food science of animal resources, 35(6), 831–840. https://doi.org/10.5851/kosfa.2015.35.6.831 Pihlanto, A., Virtanen, T., Korhonen, H. (2010). Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk. International Dairy Journal, 20(1), 3–10. https://doi.org/10.1016/j.idairyj.2009.07.003 Quirós, A., Ramos, M., Muguerza, B., Delgado, M. A., Miguel, M., Aleixandre, A., Recio, I. (2007). Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. International Dairy Journal, 17(1), 33–41. https://doi.org/10.1016/j.idairyj.2005.12.011 Quirós, A., Contreras, M. del M., Ramos, M., Amigo, L., Recio, I. (2009). Stability to gastrointestinal enzymes and structure–activity relationship of β-casein-peptides with antihypertensive properties. Peptides, 30(10), 1848–1853. https://doi.org/10.1016/j.peptides.2009.06.031 Raikos, V., Dassios, T. (2013). Health-promoting properties of bioactive peptides derived from milk proteins in infant food: A review. Dairy Science Technology, 94(2), 91–101. https://doi.org/10.1007/s13594-013-0152-3 Rasika, D., Ueda, T., Jayakody, L., Suriyagoda, L., Silva, K., Ando, S., Vidanarachchi, J. (2015). ACE-inhibitory activity of milk fermented with Saccharomyces cerevisiae K7 and Lactococcus lactis subsp. lactis NBRC 12007. Journal of the National Science Foundation of Sri Lanka, 43(2), 141. https://doi.org/10.4038/jnsfsr.v43i2.7942 Raveschot, C., Cudennec, B., Coutte, F., Flahaut, C., Fremont, M., Drider, D., Dhulster, P. (2018). Production of bioactive peptides by lactobacillus species: From gene to application. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02354 Robinson, R. C., Nielsen, S. D., Dallas, D. C., Barile, D. (2021). Can cheese mites, maggots and molds enhance bioactivity? Peptidomic investigation of functional peptides in four traditional cheeses. Food & Function, 12(2), 633–645. https://doi.org/10.1039/d0fo02439b Rodríguez-Figueroa, J. C., González-Córdova, A. F., Torres-Llanez, M. J., Garcia, H. S., Vallejo-Cordoba, B. (2012). Novel angiotensin I-converting enzyme inhibitory peptides produced in fermented milk by specific wild Lactococcus lactis strains. Journal of Dairy Science, 95(10), 5536–5543. https://doi.org/10.3168/jds.2011-5186 Rossini, K., Noreña, C. P. Z., Cladera-Olivera, F., Brandelli, A. (2009). Casein peptides with inhibitory activity on lipid oxidation in beef homogenates and mechanically deboned poultry meat. LWT - Food Science and Technology, 42(4), 862–867. https://doi.org/10.1016/j.lwt.2008.11.002 Rubak, Y. T., Nuraida, L., Iswantini, D., Prangdimurti, E. (2020). Angiotensin-I-converting enzyme inhibitory peptides in milk fermented by indigenous lactic acid bacteria., Carpathian Journal of Food Science and Technology, 13(2), 345–353. https://doi.org/10.14202/vetworld.2020.345-353 Rubak, Y. T., Nuraida, L., Iswantini, D., Prangdimurti, E. (2019). Production of antihypertensive bioactive peptides in fermented food by lactic acid bacteria - a review. Carpathian Journal of Food Science and Technology, 11(4), 29-44. https://doi.org/10.34302/2019.11.4.3 Schalk, J. (2009). Optimization of the bioconvertion of the Angiotensin I Converting Enzyme inhibitors IPP and VPP. In Advances in Experimental Medicine and Biology. 275–276. Springer New York. http://dx.doi.org/10.1007/978-0-387-73657-0_123 Shi, M., Ahtesh, F., Mathai, M., McAinch, A. J., Su, X. Q. (2016). Effects of fermentation conditions on the potential anti-hypertensive peptides released from yogurt fermented by Lactobacillus helveticusand Flavourzyme®. International Journal of Food Science & Technology, 52(1), 137–145. https://doi.org/10.1111/ijfs.13253 Skrzypczak, K., Gustaw, W., Szwajgier, D., Fornal, E., Waśko, A. (2017). κ-Casein as a source of short-chain bioactive peptides generated by Lactobacillus helveticus. Journal of Food Science and Technology, 54(11), 3679–3688. https://doi.org/10.1007/s13197-017-2830-2 Subrota, H., Sreeja, V., Solanki, J., Prajapati, J.B. (2015). Significance of proteolytic microorganisms on ACE-inhibitory activity and release of bioactive peptides during fermentation of milk. Indian Journal of Dairy Science, 68(6), 584-591 Sultan, S., Huma, N., Butt, M. S., Aleem, M., Abbas, M. (2017). Therapeutic potential of dairy bioactive peptides: A contemporary perspective. Critical Reviews in Food Science and Nutrition, 58(1), 105–115. https://doi.org/10.1080/10408398.2015.1136590 Szwajkowska, M., Wolanciuk, A., Barłowska, J., Król, J., Litwińczuk, Z. (2011). Bovine milk proteins as the source of bioactive peptides influencing the consumers' immune system - a review. Animal Science Papers and Reports, 29(4), 269-280 Tavares, T., Contreras, M. del M., Amorim, M., Pintado, M., Recio, I., Malcata, F. X. (2011). Novel whey-derived peptides with inhibitory effect against angiotensin-converting enzyme: In vitro effect and stability to gastrointestinal enzymes. Peptides, 32(5), 1013–1019. https://doi.org/10.1016/j.peptides.2011.02.005 Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., Straus, S. E. (2018). PRISMA extension for scoping reviews (prisma-scr): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/m18-0850 Tu, M., Liu, H., Zhang, R., Chen, H., Fan, F., Shi, P., Xu, X., Lu, W., Du, M. (2018). Bioactive hydrolysates from casein: Generation, identification, and in silico toxicity and allergenicity prediction of peptides. Journal of the Science of Food and Agriculture, 98(9), 3416–3426. https://doi.org/10.1002/jsfa.8854 Udenigwe, C., Abioye, R., Okagu, I.U., Joy, O.N. (2021). Bioaccessibility of bioactive peptides: recent advances and perspectives. Current Opinion in Food Science, 39, 182-189. Ulug, S. K., Jahandidfh, F., Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends in Food Science, 108, 27–39. https://doi.org/10.1016/j.tifs.2020.12.002 Venegas‐Ortega, M. G., Flores‐Gallegos, A. C., Martínez‐Hernández, J. L., Aguilar, C. N., Nevárez‐Moorillón, G. V. (2019). Production of bioactive peptides from lactic acid bacteria: A sustainable approach for healthier foods. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1039–1051. https://doi.org/10.1111/1541-4337.12455 Villadóniga, C., Macció, L., Cantera, A. M. B. (2018). Acid whey proteolysis to produce angiotensin-I converting enzyme inhibitory hydrolyzate. Environmental Sustainability, 1(3), 267–278. https://doi.org/10.1007/s42398-018-0027-x Vicente, C.M.R.R.S. (2008). Valorisation of the Peptidic Fraction of Cheese Whey. Wakai, T., Yamaguchi, N., Hatanaka, M., Nakamura, Y., Yamamoto, N. (2012). Repressive processing of antihypertensive peptides, Val-Pro-Pro and Ile-Pro-Pro, in Lactobacillus helveticus fermented milk by added peptides. Journal of Bioscience and Bioengineering, 114(2), 133–137. https://doi.org/10.1016/j.jbiosc.2012.03.015 Worsztynowicz, P., Białas, W., & Grajek, W. (2020). Integrated approach for obtaining bioactive peptides from whey proteins hydrolysed using a new proteolytic lactic acid bacterium. Food Chemistry, 312, 126035. https://doi.org/10.1016/j.foodchem.2019.126035
Дополнительные файлы


