Mechanisms of Enhancing Bacteriocin Synthesis by Members of the Lactobacillaceae
- Autores: Sokolov I.R.1, Nsanova V.M.1, Vinogradov V.M.1, Kanochkina M.S.1
-
Afiliações:
- Russian Biotechnological University
- Edição: Volume 3, Nº 2 (2025)
- Páginas: 79-105
- Seção: SCOPING REVIEW
- URL: https://journals.rcsi.science/2949-6497/article/view/352234
- DOI: https://doi.org/10.37442/fme.2025.2.81
- ID: 352234
Citar
Texto integral
Resumo
Sobre autores
I. Sokolov
Russian Biotechnological University
Email: radek.sokolov1@yandex.ru
ORCID ID: 0000-0003-4574-6853
V. Nsanova
Russian Biotechnological University
Email: Adekemore@gmail.com
ORCID ID: 0009-0009-2008-5631
V. Vinogradov
Russian Biotechnological University
Email: maxvin-96@mail.ru
ORCID ID: 0009-0003-8214-8569
M. Kanochkina
Russian Biotechnological University
Email: kanoch@yandex.ru
ORCID ID: 0000-0001-6077-5957
Código SPIN: 2584-6474
Bibliografia
• Aasen, I. M., et al. (2000). Influence of nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei. Applied Microbiology and Biotechnology, 53(2), 159–166. doi: 10.1007/s002530050003 • Abanoz, H. S., Kunduhoglu, B. (2021). Antimicrobial activity of bacteriocins against food pathogens. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3315–3337. doi: 10.1111/1541-4337.12769 • Abo-Amer, A. E. (2011). Optimization of bacteriocin production by Lactobacillus acidophilus AA11, a strain isolated from Egyptian cheese. Annals of Microbiology, 61(3), 445–452. doi: 10.1007/s13213-010-0157-6 • Alvarez-Sieiro, P., et al. (2016). Bacteriocins of lactic acid bacteria: extending the family. Applied Microbiology and Biotechnology, 100(7), 2939–2951. doi: 10.1007/s00253-016-7343-9 • Anastasiadou, S., et al. (2008). Growth and metabolism of a meat isolated strain of Pediococcus pentosaceus in submerged fermentation. Enzyme and Microbial Technology, 43(6), 448–454. doi: 10.1016/j.enzmictec.2008.05.007 • Anthony, T., et al. (2009). Influence of medium and fermentation conditions on bacteriocin production by Bacillus licheniformis AnBa9. Bioresource Technology, 100(2), 872–877. doi: 10.1016/j.biortech.2008.07.027 • Balciunas, E. M., et al. (2023). Novel bacteriocins from Enterococcus spp.: biotechnological potential. Biotechnology Letters, 45(2), 189–201. doi: 10.1007/s10529-022-03327-9 • Bharti, V., et al. (2015). Bacteriocin: A novel approach for preservation of food. International Journal of Pharmacy and Pharmaceutical Sciences, 7(9), 1–10. • Cabo, M. L., et al. (2001). Effects of aeration and pH gradient on nisin production. Enzyme and Microbial Technology, 29(4–5), 264–273. doi: 10.1016/S0141-0229(01)00378-7 • Cheigh, C.-I., et al. (2002). Influence of growth conditions on the production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164. Journal of Biotechnology, 95(3), 225–235. doi: 10.1016/S0168-1656(02)00010-X • Daba, H., et al. (1993). Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Applied Microbiology and Biotechnology, 39(2), 166–173. doi: 10.1007/BF00228601 • De Arauz, L. J., et al. (2009). Nisin biotechnological production and application: a review. Trends in Food Science & Technology, 20(3–4), 146–154. doi: 10.1016/j.tifs.2009.01.056 • De Carvalho, A. A. T., et al. (2009). The effect of carbon and nitrogen sources on bovicin HC5 production by Streptococcus bovis HC5. Journal of Applied Microbiology, 107(1), 339–347. doi: 10.1111/j.1365-2672.2009.04212.x • De Vuyst, L. (1994). Lactostrepcins, bacteriocins produced by Lactococcus lactis strains. In: Bacteriocins of Lactic Acid Bacteria, 291–299. Boston, MA: Springer US. • Dobson, A. et al. Bacteriocin production: a probiotic trait? // Applied and Environmental Microbiology. – 2012. – Vol. 78, № 1. – P. 1-6. doi: 10.1128/AEM.05576-11 • Dominguez, A. P. M., et al. (2007). Cerein 8A production in soybean protein using response surface methodology. Biochemical Engineering Journal, 35(2), 238–243. doi: 10.1016/j.bej.2007.01.019 • Garsa, A. K., et al. (2014). Bacteriocin production and different strategies for their recovery and purification. Probiotics and Antimicrobial Proteins, 6(1), 47–58. doi: 10.1007/s12602-013-9153-z • Geisen, R., et al. (1993). Bacteriocin production of Leuconostoc carnosum LA54A at different combinations of pH and temperature. Journal of Industrial Microbiology, 12(3–5), 337–340. doi: 10.1007/BF01584211 • Gharsallaoui, A., et al. (2020). Structural and functional insights into class IIa bacteriocins. Biochemical Journal, 477(1), 1–15. doi: 10.1042/BCJ20190475 • Gong, X., et al. (2023). Immobilized cell systems for bacteriocin production. Bioresource Technology, 370, 128523. doi: 10.1016/j.biortech.2022.128523 • Guerra, N. P., & Pastrana, L. (2001). Enhanced nisin and pediocin production on whey with nitrogen sources. Biotechnology Letters, 23(8), 609–612. doi: 10.1023/A:1010324910806 • Guerra, N. P., et al. (2008). Modelling biphasic growth and pediocin production by Pediococcus acidilactici in fed-batch cultures. Biochemical Engineering Journal, 40(3), 465–472. doi: 10.1016/j.bej.2008.02.001 • Holzapfel, W. H., Wood, B. J. B. (Eds.). (2018). Lactic Acid Bacteria: Biodiversity and Taxonomy (2nd ed.). Hoboken: Wiley-Blackwell. P. 632. doi: 10.1002/9781118995255 • Kim, W. S., et al. (1997). The effect of nisin concentration and nutrient depletion on nisin production of Lactococcus lactis. Applied Microbiology and Biotechnology, 48(4), 449–453. doi: 10.1007/s002530051078 • Liu, G., et al. (2022). CRISPR-Cas9 engineering of Lactococcus lactis for enhanced nisin yield. ACS Synthetic Biology, 11(3), 1123–1135. doi: 10.1021/acssynbio.1c00567 • Liu, G., Nie, R., Liu, Y., Li, X., Duan, J., Hao, X., Shan, Y., & Zhang, J. (2022). Bacillus subtilis BS-15 Effectively Improves Plantaricin Production and the Regulatory Biosynthesis in Lactiplantibacillus plantarum RX-8. Frontiers in microbiology, 12, 772546. https://doi.org/10.3389/fmicb.2021.772546 • Ljungh, A., Wadstrom, T. (Eds.). (2021). Lactobacillus Molecular Biology (4th ed.). Norfolk: Caister Academic Press. P. 298. doi: 10.21775/9781913652619 • Luesink, E. J., et al. (1998). Transcriptional regulation of the las and gal operons in Lactococcus lactis. Molecular Microbiology, 30(4), 789–798. doi: 10.1046/j.1365-2958.1998.01111.x • Mataragas, M., et al. (2002). Characterization of two bacteriocins produced by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442, isolated from dry fermented sausages. World Journal of Microbiology and Biotechnology, 18(9), 847–856. doi: 10.1023/A:1021239008582 • Mataragas, M., Metaxopoulos, J. and Drosinos, E. H. 2002. Characterization of two bacteriocins produced by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442, isolated from dry fermented sausages. World Journal of Microbiology and Biotechnology 18 (9):847–56. doi: 10.1023/A:1021239008582. • Miao, J., et al. (2015). Optimization of culture conditions for the production of antimicrobial substances by probiotic Lactobacillus paracasei subsp. tolerans FX-6. Journal of Functional Foods, 18, 244–253. doi: 10.1016/j.jff.2015.07.011 • Montville, T. J., Matthews, K. R. (2021). Food Microbiology: An Introduction (4th ed.). Washington: ASM Press. P. 598. doi: 10.1128/9781555819974 • Moretro, T., et al. (2000). Production of sakacin P by Lactobacillus sakei in defined medium. Journal of Applied Microbiology, 88(3), 536–545. doi: 10.1046/j.1365-2672.2000.00994.x • Motta, A. S., & Brandelli, A. (2003). Influence of growth conditions on bacteriocin production by Brevibacterium linens. Applied Microbiology and Biotechnology, 62(2–3), 163–167. doi: 10.1007/s00253-003-1292-9 • Mozzi, F., et al. (2020). Biotechnology of Lactic Acid Bacteria: Novel Applications (2nd ed.). Hoboken: Wiley. P. 432. doi: 10.1002/9781119593132 • Nes, I. F., et al. (2020). Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications. Hoboken: Wiley. P. 356. doi: 10.1002/9781119599819 • Papagianni, M., & Sergelidis, D. (2013). Effects of the presence of the curing agent sodium nitrite on bacteriocin production by Weissella paramesenteroides DX. Enzyme and Microbial Technology, 53(1), 1–5. doi: 10.1016/j.enzmictec.2013.04.003 • Papagianni, M., et al. (2007). Investigating the relationship between the specific glucose uptake rate and nisin production in cultures of Lactococcus lactis. Enzyme and Microbial Technology, 40(6), 1557–1563. doi: 10.1016/j.enzmictec.2006.10.035 • Parente, E., & Hill, C. (1992). A comparison of factors affecting the production of two bacteriocins from lactic acid bacteria. Journal of Applied Bacteriology, 73(4), 290–298. doi: 10.1111/j.1365-2672.1992.tb04980.x • Parente, E., & Ricciardi, A. (1994). Influence of pH on the production of enterocin 1146 during batch fermentation. Letters in Applied Microbiology, 19(1), 12–15. doi: 10.1111/j.1472-765X.1994.tb00891.x • Parente, E., et al. (1994). Influence of pH on growth and bacteriocin production by Lactococcus lactis subsp. lactis 140Nwc. Applied Microbiology and Biotechnology, 41(4), 388–389. • Pattnaik, P., et al. (2001). Purification and characterization of a bacteriocin-like compound (Lichenin) produced anaerobically by Bacillus licheniformis. Journal of Applied Microbiology, 91(4), 636–645. doi: 10.1046/j.1365-2672.2001.01429.x • Pattnaik, P., et al. (2005). Effect of environmental factors on production of lichenin by Bacillus licheniformis 26L-10/3RA. Microbiological Research, 160(2), 213–218. doi: 10.1016/j.micres.2005.01.006 • Salminen, S., et al. (2022). Lactic Acid Bacteria: Microbiological and Functional Aspects (5th ed.). Boca Raton: CRC Press. P. 688. doi: 10.1201/9781003049223 • Savadogo, A. (2019). Bacteriocins and Food Safety. London: Academic Press. P. 284. doi: 10.1016/C2017-0-02385-7 • Schirru, S., et al. (2014). Comparison of bacteriocins production from Enterococcus faecium strains in cheese whey and MRS medium. Annals of Microbiology, 64(1), 321–331. doi: 10.1007/s13213-013-0667-0 • Settanni, L., & Corsetti, A. (2008). Application of bacteriocins in vegetable food biopreservation. International Journal of Food Microbiology, 121(2), 123–138. doi: 10.1016/j.ijfoodmicro.2007.09.001 • Shin, J. M., et al. (2021). Heterologous expression of bacteriocins using lactic acid bacteria. Metabolic Engineering, 67, 1–10. doi: 10.1016/j.ymben.2021.05.007 • Sonomoto, K., Yokota, A. (Eds.). (2021). Lactic Acid Bacteria: Engineering and Applications (2nd ed.). Berlin: Springer. P. 498. doi: 10.1007/978-981-33-6236-9 • Stiles, M. E., Holzapfel, W. H. (2022). Lactic Acid Bacteria: Microbiological and Functional Aspects (5th ed.). Boca Raton: CRC Press. P. 712. doi: 10.1201/9781003049223 • Todorov, S. D., et al. (2006). Effect of medium components on bacteriocin production by Lactobacillus plantarum strains ST23LD and ST341LD, isolated from spoiled olive brine. Microbiological Research, 161(2), 102–128. doi: 10.1016/j.micres.2005.06.006 • Todorov, S. D., et al. (2010). Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chourico, traditional pork products from Portugal. Meat Science, 84(3), 334–343. doi: 10.1016/j.meatsci.2009.08.053 • Vignolo, G. M., et al. (1995). Influence of growth conditions on the production of lactocin 705 by Lactobacillus casei CRL 705. Journal of Applied Bacteriology, 78(1), 5–10. doi: 10.1111/j.1365-2672.1995.tb01665.x • Xu, Y., Yang, L., Li, P., & Gu, Q. (2019). Heterologous expression of Class IIb bacteriocin Plantaricin JK in Lactococcus lactis. Protein expression and purification, 159, 10–16. https://doi.org/10.1016/j.pep.2019.02.013 • Yang, R., & Ray, B. (1994). Factors influencing production of bacteriocins by lactic acid bacteria. Food Microbiology, 11(4), 281–291. doi: 10.1006/fmic.1994.1032 • Yang, S. C., et al. (2023). Next-generation bacteriocins: expanding the synthetic biology toolbox. Nature Reviews Chemistry, 7(2), 1–18. doi: 10.1038/s41570-022-00450-1 • Zamfir, M., et al. (2000). Production kinetics of acidophilin 801 by Lactobacillus acidophilus IBB 801. FEMS Microbiology Letters, 190(2), 305–308. doi: 10.1111/j.1574-6968.2000.tb09303.x • Гусева, Т. Б., Солдатова, С. Ю., & Караньян, О. М. (2021). Органолептическая оценка молочных консервов: особенности проведения и интерпретации результатов. Товаровед продовольственных товаров, 10, 726–729. doi: 10.33920/igt-01-2110-01 • Егоров, Н. С. (2020). Основы биотехнологии молочнокислых бактерий. СПб.: Профессия. С. 328. • Лоозе, В. В., Костромина, Т. Г., & Солдатова, С. Ю. (2024). Новые возможности научных исследований сохранности государственных запасов в многолетней мерзлоте. Научное обеспечение технологического развития и повышения конкурентоспособности в пищевой и перерабатывающей промышленности (с. 69–74). Федеральный научный центр пищевых систем им. В.М. Горбатова. • Солдатова, С. Ю., Филатова, Г. Л., & Куликовская, Т. С. (2019). Листериоз - эмерджентная инфекция с пищевым путем передачи. Вестник Нижневартовского государственного университета, 2, 110–117.
Arquivos suplementares

