The Role of Postbiotic Composition in the Growth Stimulating of Bifidobacteria
- Authors: Kolokolova A.Y.1, Kishilova S.A.1, Rozhkova I.V.1, Mitrova V.A.1
-
Affiliations:
- All-Russian Dairy Research Institute
- Issue: Vol 2, No 2 (2024)
- Pages: 12-21
- Section: ORIGINAL EMPIRICAL RESEARCH
- URL: https://journals.rcsi.science/2949-6497/article/view/353360
- DOI: https://doi.org/10.37442/fme.2024.2.56
- ID: 353360
Cite item
Full Text
Abstract
Introduction: Probiotic microorganisms are known to increase the biological value of foods, reduce cholesterol levels, positively affect the immune system, prevent intestinal infections and diarrhea associated with antibiotics, reduce symptoms of lactose intolerance, etc. These positive effects depend on the properties of the probiotic strain. The metabolic products of probiotic microorganisms are also capable of having a positive effect on the human body. The metabolic complexes secreted by probiotic bacteria are characterized by high digestibility and resistance to environmental conditions and can potentially be used along with probiotic microorganisms.Purpose: To study. the possible effect of different concentrations of the postbiotic composition on enhancing the biological properties of the product, in particular, its ability to stimulate the growth of bifidobacteria.Materials and Methods: As objects of research, a fermented milk product based on a probiotic association consisting of Lactococcus cremoris 241C, Lactocaseibacillus rhamnosus F, Propionibacterium shermanii E2, developed using a postbiotic complex (PC) in concentrations of 0.5 and 0.01%, was used. In the study of the ability to stimulate the growth of bifidobacteria, a strain of Bifidobacterium adolescentis MS–42 from the collection of FGANU «VNIMI» was used as a control culture. The studies were carried out on the GMC 2 medium and a probiotic fermented milk product developed on sterile skimmed milk. The effect of two PC concentrations (0.5 and 0.01%) on stimulating the growth of bifidobacteria in experimental samples after 8 and 24 hours of incubation was studied.Results: The positive effect of PC at a concentration of 0.01% on the growth of bifidobacteria was confirmed. The absence of a stimulating effect of PC in a concentration of 0.5% may be due to inhibition by acetic acid - the final productConclusion: The data obtained allow us to confirm the increase in the biological effectiveness of a fermented milk product with a postbiotic complex in relation to stimulating the growth of bifidobacteria, and recommend it as an additive to the biotechnological system at a concentration of 0.01%.
About the authors
Anastasia Yuryevna Kolokolova
All-Russian Dairy Research Institute
Author for correspondence.
Email: a_kolokolova@vnimi.org
ORCID iD: 0000-0002-9816-1720
SPIN-code: 2176-7410
Svetlana Anatolyevna Kishilova
All-Russian Dairy Research Institute
Email: s_kishilova@vnimi.org
ORCID iD: 0009-0000-9498-4757
Irina Vladimirovna Rozhkova
All-Russian Dairy Research Institute
Email: i_rozhkova@vnimi.org
ORCID iD: 0000-0003-4441-4515
Vera Anatolyevna Mitrova
All-Russian Dairy Research Institute
Email: v_mitrova@vnimi.org
ORCID iD: 0009-0004-6826-988X
References
Агаркова, Е.Ю., Кручинин, А.Г., & Рязанцева, К.А. (2016). Современные технологические подходы к обогащению молочных продуктов. Инновационные технологии обогащения молочной продукции (теория и практика). Москва: Франтера. Бегунова, А.В. (2022). Биологически активные метаболиты молочнокислых бактерий. Пищевая промышленность, 6, 21-25. https://doi.org/10.37442/fme.2023.3.28 Бегунова, А.В., & Жижин, Н.А. (2022). Оценка потенциала пропионовокислых бактерий для получения постбиотиков. Хранение и переработка сельхозсырья, (4), 105-112. https://doi.org/10.36107/spfp.2022.356 Бегунова, А.В., & Жижин, Н.А. (2023). Характеристика метаболитного комплекса, продуцируемого L. reuteri LR1. Food Metaengineering, 1(3), 11-20. https://doi.org/10.37442/fme.2023.3.28 Валышев, А. В., & Головченко, В. В. (2012). Пребиотическая активность пектинов и их производных. Бюллетень Оренбургского научного центра УРО РАН, (3), 5. Зобкова, З.С., Кондратенко, В.В., Пряничникова, Н.С., Зенина, Д.В., & Коровина, Н.С. (2023). Разработка и адаптация прогностической модели полнофакторной оптимизации технологического процесса производства пробиотического кисломолочного продукта. Food Metaengineering, 1(4), 48-56. https://doi.org/10.37442/fme.2023.4.30 Комарова, О. Н., & Данилова А. И. (2023). Ферментация молочной основы с естественным образованием олигосахаридов грудного молока – новые возможности в адаптации детских смесей. Лечащий Врач, 9(26), 50-56. https://doi.org/10.51793/OS.2023.26.9.006 Олескин, А. В., & Шендеров, Б. А. (2020). Пробиотики, психобиотики и метабиотики: проблемы и перспективы. Физическая и реабилитационная медицина. Медицинская реабилитация, 3, 233–243. https://doi.org/10.36425/rehab25811 Кайбышева, В. О., & Никонов, Е. Л. (2019). Пробиотики с позиции доказательной медицины. Доказательная гастроэнтерология, 8(3), 45-54. https://doi.org/10.17116/dokgastro2019803145 Рожкова, И. В., Бегунова, А. В., & Крысанова, Ю. И. (2021). Создание кисломолочного продукта с использованием ассоциации пробиотических культур. Пищевая промышленность, 8, 36-39. Хавкин, А. В., & Ковтун, Т. А. (2021). Кисломолочные пробиотические продукты - пища или лекарство? Вопросы детской диетологии, 19(3), 58-69. Чистяков, В. А., Празднова, Е. В., Денисенко, Ю. В., Стаценко, В. Н., Матросова, С. В., & Кучко, Т. Ю. (2023). Постбиотики: новая группа биопрепаратов. Живые и биокосные системы, (45), 1-24. https://doi.org/10.18522/2308-9709-2023-46-1 Рябцева, С. А., Храмцов, А. Г., Шпак, М. А., Лодыгин, А. Д., Анисимов, Г. С., Сазанова, С. Н., & Табакова, Ю. А. (2023). Биотехнология производства лактулозы: прогресс, проблемы, перспективы. Техника и технология производные пищевых продуктов, 53(1), 97-122. https://doi.org/10.24411/0042-8833-20-10012 Разгуляева, О. И., & Мезенова, О. Я. (2016). Роль бифидобактерий в кисломолочных продуктах геродиетического назначения. Вестник молодежной науки, 4(6), 6. Шендеров, Б. А. (2017). Метабиотики - новая технология профилактики заболеваний, связанных с микроэкологическим дисбалансом человека. Вестник восстановительной медицины, 4(80), 40. Abd El-Ghany, W.A. (2020). Paraprobiotics and postbiotics: Contemporary and promising natural antibiotics alternatives and their applications in the poultry field. Open Veterinary Journal 10(3), 323-330. https://doi.org/10.4314/ovj.v10i3.11 Aggarwal, S., Sabharwal, V., Kaushik, P., Joshi, A., Aayushi, A., & Suri, M. (2022). Postbiotics: from emerging concept to application. Frontiers in Sustainable Food Systems, 6. https://doi.org/10.3389/fsufs.2022.887642 Aguilar-Toalá, J. E., Garcia-Valera, R., Garcia, H., & Mata-Haro, V. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105-114. http://dx.doi.org/10.1002/mnfr.202000188 Ali, M.A., Kamal, M.M., Rahman, M.H., Siddiqui, M.N., Haque, M.A., Saha, K.K., & Rahman, M.A. (2022). Functional dairy products as a source of bioactive peptides and probiotics: Current trends and future prospectives. Journal of Food Science and Technology, 59(4), 1263-1279. https://doi.org/10.1007/s13197-021-05091-8 Compare, D., Rocco, A., Coccoli, P., Angrisani, D., Sgamato, C., & Iovine, B. (2017). Lactobacillus casei DG and its postbiotic reduce the infammatory mucosal response: An ex-vivo organ culture model of post-infectious irritable bowel syndrome. BMC Gastroenterology, 17(1), 53. http://dx.doi.org/10.1186/s12876-017-0605-x Cuevas-González, P.F., Liceaga, A.M., &Aguilar-Toalá, J.E. (2020). Postbiotics and paraprobiotics: From concepts to applications. Food Research International, 136, 109502. https://doi.org/10.1016/j.foodres.2020.109502 Gareau M. G., Sherman P. M., & Walker W. A. (2010). Probiotics and the gut microbiota in intestinal health and disease. Nature Reviews Gastroenterology & Hepatology, 7(9), 503-514. http://dx.doi.org/10.1038/nrgastro.2010.117 Giorgetti, G., Brandimarte, G., Fabiocchi, F., Ricci, S., Flamini, P., Sandri, G., Trotta, M.C., Elisei, W., Penna S., & Islam, S. U. (2016). Clinical uses of probiotics. Medicine, 95(5), 1-5. http://dx.doi.org/10.1097/MD.0000000000002658 LeBlanc, J.G., Milani, C., de Giori, G.S., Sesma, F., van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Оpinion in Biotechnology, 24(2), 160-168. https://doi.org/10.1016/j.copbio.2012.08.005 Malagón-Rojas, J.N. Mantziari, A., Salminen, S., & Szajewska, H. (2020). Postbiotics for preventing and treating common infectious diseases in children: A systematic review. Nutrients, 12, 389. https://doi.org/10.3390/nu12020389 Martín, R., & Langella, P. (2019). Emerging health concepts in the probiotics feld: Streamlining the defnitions. Frontiers in Microbiology, 10. http://dx.doi.org/10.3389/fmicb.2019.01047 Mayorgas, A., Dotti, I., & Salas, A. (2021). Microbial metabolites, postbiotics, and intestinal epithelial function. Molecular Nutrition & Food Research, 65(5), 2000188. https://doi.org/10.1002/mnfr.202000188 Nataraj, B.H., Ali, S.A., Behare, P.V., &Yadav, H. (2020). Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19(1), 168. https://doi.org/10.1186/s12934-020-01426-w Oelschlaeger, T. A. (2010). Mechanisms of probiotic actions–a review. International Journal of Medical Microbiology, 300(1), 57-62. http://dx.doi.org/10.1016/j.ijmm.2009.08.005 Rozhkova, I.V., Yurova, E.A., & Leonova, V.A. (2023). Evaluation of the amino acid composition and content of organic acids of complex postbiotic substances obtained based on metabolites of probiotic bacteria Lacticaseibacillus paracasei ABK and Lactobacillus helveticus H9. Fermentation, 9(5), 460. https://doi.org/10.3390/fermentation9050460 Saulnier, D.M., Santos, F., Roos, S., Mistretta, T.A., Spinler, J.K., Molenaar, D., Teusink, B., & Versalovic, J. (2011). Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PloS One, 6(4), 183-187. http://dx.doi.org/10.1371/journal.pone.0018783 Salminen, S., Collado, M.C., Endo, A., Hill, C., Lebeer, S., Quigley, E.M., Sanders, M.E., Shamir, R., Swann, J.R., Szajewska, H., & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9), 649-667. https://doi.org/10.1038/s41575-021-00440-6 Szydłowska, A., & Sionek, B. (2022). Probiotics and postbiotics as the functional food components affecting the immune response. Microorganisms, 11(1), 104. https://doi.org/10.3390/микроорганизмы11010104 Teame, T., Wang, A., Xie, M., Zhang, Z., Yang, Y., Ding, Q., Gao, C., Olsen, R.E., Ran, C., & Zhou, Z. (2020). Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms. Front Nut, (7), 570344. https://doi.org/10.3389/fnut.2020.570344
Supplementary files

