Study of Exopolysaccharide Production by Lactic Acid Bacteria used in the Baking Industry and Comparison of Methods for Their Determination

Cover Page

Cite item

Full Text

Abstract

Introduction: Exopolysaccharides are high molecular weight compounds consisting of monosaccharide residues and their derivatives, which have biological activity and play a protective role in physiological processes. The search for strains of lactic acid bacteria producing exopolysaccharides is a promising area of research due to their proven positive effect on the rheological properties of fermented food products, as well as human health.Purpose: To study the ability of lactic acid bacteria strains from the collection of FGANU NIIHP to produce exopolysaccharides, as well as to compare different methods of their determination - gravimetric, phenol-sulfuric acid Dubois method, anthrone reagent method and titrimetric Bertrand method.Materials and Methods: To determine the ability to produce exopolysaccharides, cultures of lactic acid bacteria were cultured on 12% malt mash for 48 hours at the optimum temperature for each strain. After protein removal and dialysis, the amount of exopolysaccharides was determined in the culture fluid by different methods.Results: It was found that all the collection strains formed exopolysaccharides in different amounts. The strains producing the highest amount of exopolysaccharides were identified as L.amilolyticus-2, L. plantarumA-63(d), L.amilolyticus-1, L.brevis-78(d), L. paracasei-6. The yield of the product containing exopolysaccharides produced by lactic acid bacteria ranged from 7 to 14.4 mg in 1 ml of culture liquid. The results of the study allowed us to conclude the correctness of Dubois method for estimating the content with respect to exopolysaccharides produced by lactic acid bacteria.Conclusion: The conducted studies confirm the ability of strains of lactic acid bacteria, from the collection of FGANU NIIHP, to produce exopolysaccharides. The correctness of the Dubois method for the determination of exopolysaccharides produced by lactic acid bacteria was established.

About the authors

Vladimir V. Martirosyan

Scientific Research Institute for the Baking Industry

Email: v.martirosyan@gosniihp.ru
ORCID iD: 0000-0002-4026-5789
SPIN-code: 5140-5360

Marina N. Kostyuchenko

Scientific Research Institute for the Baking Industry

Email: kostuchenko@gosniihp.ru
ORCID iD: 0000-0001-7854-3513

Mikhail V. Reynov

Scientific Research Institute for the Baking Industry

Email: m.rejnov@gosniihp.ru
ORCID iD: 0000-0002-8900-1565

Olga E. Tyurina

Scientific Research Institute for the Baking Industry

Email: o.tyurina@gosniihp.ru
ORCID iD: 0000-0002-6662-7530

Olesia A. Savkina

Saint-Peterburg Branch of «Scientific Research Institute for the Baking Industry»

Email: o.savkina@gosniihp.ru
ORCID iD: 0000-0002-2372-4277

References

  1. Абрамова, А.Л. (2009). Методы определения экзополисахаридов (ЭПС). Научное обеспечение молочной промышленности (ВНИМИ - 80 лет) (c. 8-12). Место издания: ВНИМИ.
  2. Винокуров, В. А., Грайфер, В. И., Гринберг, Т. А., Пирог, Т. П., Владимиров, А. И., & Исмагилов, А. М. (2004). Способ получения экзополисахаридов (Патент РФ № 2 241 037). Российское патентное ведомство. Опубликовано 27.11.2004, Бюл. № 33.
  3. Григорьев, Е. Ф., Болоховская, В. А., Халабузарь, В. Г., Кравец, Л. Ф., Дерябин, В. В., & Бовина, Е. В. (1990). Способ выделения экзополисахаридов (Патент СССР № 1 549 996). Патентное ведомство СССР. Опубликовано 15.03.1990.
  4. Еникеев, Р. Р., Бобошко, Д. Н., Руденко, Е. Ю., & Зимичев, А. В. (2011). Способ количественного анализа полисахарида, производимого молочнокислыми бактериями (Патент РФ № 2 437 092). Российское патентное ведомство. Опубликовано 20.12.2011, Бюл. № 35.
  5. Кичемазова, Н.В. (2019). Экзополисахариды бактерий родов Xanthobacter и Ancylobacter: характеристика и их биологические свойства. ФГБОУ ВО Вавиловский Университет.
  6. Куис, Л. В., & Маркевич, Р. М. (2009). Выделение, фракционирование и анализ экзополисахаридов Bacillus mucilaginosus. Труды БГТУ. Серия 2: Химические технологии, биотехнология, геоэкология (c. 170-173). Минск: БГТУ.
  7. Локачук, М. Н., Савкина, О.А., Павловская, Е. Н., Фролова, Ю. М., Костюченко, М. Н., & Мартиросян, В. В. (2023). Современная таксономия и разнообразие молочнокислых бактерий в заквасках. Хлебопродукты, (6), 28-35. https://doi.org/10.32462/0235-2508-2023-32-6-28-35
  8. Фокина, Н.А. (2015). Экзополисахарид Streptococcus Thermophilus: условия выделения и свойства. Актуальная биотехнология, 14(3), 41-42.
  9. Хусаинов, И.А. (2014). Современные представления о биосинтезе бактериальных экзополисахаридов. Вестник Казанского технологического университета, 17(5), 167-172.
  10. Amiri, S., Rezaei Mokarram, R., Sowti Khiabani, M., Rezazadeh Bari, M., & Alizadeh Khaledabad, M. (2019). Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12: Optimization of fermentation variables and characterization of structure and bioactivities. International Journal of Biological Macromolecules, 123, 752-765. https://doi.org/10.1016/j.ijbiomac.2018.11.084
  11. Cerning, J., Bouillanne, C., & Desmazeaud, M. J. (1988). Exocellular polysaccharide production by Streptococcus thermophiles. Biotechnology Letters, 10, 255–260. https://doi.org/10.1007/BF01024415
  12. Daba, G. M., Elnahas, M. O., & Elkhateeb, W. A. (2021). Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. International Journal of Biological Macromolecules, 173, 79-89. https://doi.org/10.1016/j.ijbiomac.2021.01.110
  13. Das, L., Raychaudhuri, U., & Chakraborty, R. (2015). Effects of hydrocolloids as texture improver in coriander bread. Journal of Food Science and Technology, 52(6), 3671–3680. https://doi.org/10.1007/s13197-014-1296-8
  14. Dilna, S. V., Surya, H., Aswathy, R. G., Varsha, K. K., Sakthikumar, D. N., Pandey, A., & Nampoothiri, K. M. (2015). Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT - Food Science and Technology, 64(2), 1179-1186. https://doi.org/10.1016/j.lwt.2015.07.040
  15. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017
  16. Galle, S., Schwab, C., Arendt, E., & Gänzle, M. (2010). Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. Journal of Agricultural and Food Chemistry, 58(9), 5834–5841. https://doi.org/10.1021/jf1002683
  17. Goh, K. K. T., Haisman, D. R., Archer, R. H., & Singh, H. (2005). Evaluation and modification of existing methods for the quantification of exopolysaccharides in milk-based media. Food Research International, 38(6), 605-613. https://doi.org/10.1016/j.foodres.2004.11.014
  18. Jurášková, D., Ribeiro, S. C., & Silva, C. C. G. (2022). Exopolysaccharides produced by lactic acid bacteria: From biosynthesis to health-promoting properties. Foods, 11(2), 156. https://doi.org/10.3390/foods11020156
  19. Katina, K., Maina, N. H., Juvonen, R., Flander, L., Johansson, L., Virkki, L., Tenkanen, M., & Laitila, A. (2009). In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiology, 26(7), 734–743. https://doi.org/10.1016/j.fm.2009.07.008
  20. Kavitake, D., Devi, P. B., Singh, S. P., & Shetty, P. H. (2016). Characterization of a novel galactan produced by Weissella confusa KR780676 from an acidic fermented food. International Journal of Biological Macromolecules, 86, 681–689. https://doi.org/10.1016/j.ijbiomac.2016.01.099
  21. Kim, Y., Oh, S., Yun, H. S., Oh, S., & Kim, S. H. (2010). Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Letters in Applied Microbiology, 51(2), 123-130. https://doi.org/10.1111/j.1472-765X.2010.02859.x
  22. Korcz, E., & Varga, L. (2021). Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology, 110, 375-384. https://doi.org/10.1016/j.tifs.2021.02.014
  23. Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S., & Lee, Y. C. (2005). Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Analytical Biochemistry, 339(1), 69-72. https://doi.org/10.1016/j.ab.2004.12.001
  24. Moroni, A. V., Arendt, E. K., & Dal Bello, F. (2011). Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs. Food Microbiology, 28(3), 497–502. https://doi.org/10.1016/j.fm.2010.10.016
  25. Nguyen, P. T., Nguyen, T. T., Bui, D. C., Hong, P. T., Hoang, Q. K., & Nguyen, H. T. (2020). Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiology, 6(4), 451-469. https://doi.org/10.3934/microbiol.2020027
  26. Oleksy-Sobczak, M., Klewicka, E., & Piekarska-Radzik, L. (2020). Exopolysaccharides production by Lactobacillus rhamnosus strains – Optimization of synthesis and extraction conditions. LWT, 122, 109055. https://doi.org/10.1016/j.lwt.2020.109055
  27. Patel, S., Majumder, A., & Goyal, A. (2012). Potentials of exopolysaccharides from lactic acid bacteria. Indian Journal of Microbiology, 52(1), 3-12. https://doi.org/10.1007/s12088-011-0148-8
  28. Prete, R., Alam, M. K., Perpetuini, G., Perla, C., Pittia, P., & Corsetti, A. (2021). Lactic acid bacteria exopolysaccharides producers: A sustainable tool for functional foods. Foods, 10, 1653. https://doi.org/10.3390/foods10071653
  29. Piermaria, J. A., De La Canal, M. L., & Abraham, A. G. (2008). Gelling properties of kefiran, a food-grade polysaccharide obtained from kefir grain. Food Hydrocolloids, 22, 1520–1527. https://doi.org/10.1016/j.foodhyd.2007.10.005
  30. Ruhmkorf, C., Jungkunz, S., Wagner, M., & Vogel, R. F. (2012). Optimization of homoexopolysaccharide formation by lactobacilli in gluten-free sourdoughs. Food Microbiology, 32(2), 286–294. https://doi.org/10.1016/j.fm.2012.07.002
  31. Rühmann, B., Schmid, J., & Sieber, V. (2015). Methods to identify the unexplored diversity of microbial exopolysaccharides. Frontiers in Microbiology, 6, 565. https://doi.org/10.3389/fmicb.2015.00565
  32. Ruijssenaars, H. J., Stingele, F., & Hartmans, S. (2000). Biodegradability of food-associated extracellular polysaccharides. Current Microbiology, 40, 194-199.
  33. Ryan, P. M., Ross, R. P., Fitzgerald, G. F., Caplice, N. M., & Stanton, C. (2014). Sugar-coated: Exopolysaccharide producing lactic acid bacteria for food and human health applications. Food & Function, 6(3), 679-693. https://doi.org/10.1039/C4FO00529E
  34. Sanalibaba, P., & Çakmak, G. A. (2016). Exopolysaccharides production by lactic acid bacteria. Applied Micro Open Access, 2, 1000115. https://doi.org/10.4172/2471-9315.1000115
  35. Zajsek, K., Gorsek, A., & Kolar, M. (2013). Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains. Food Chemistry, 139(1-4), 970-977. https://doi.org/10.1016/j.foodchem.2012.11.142
  36. Zarour, K., Vieco, N., Pérez-Ramos, A., Nácher-Vázquez, M., Mohedano, M. L., & López, P. (2017). Food ingredients synthesized by lactic acid bacteria. In Microbial Production of Food Ingredients and Additives (pp. 89–124). Elsevier. https://doi.org/10.1016/B978-0-12-811520-6.00004-0

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».