Chemical Contaminants in Ready-to-Eat Food Products: Control and Contamination Mitigation (A Scoping Review)

Cover Page

Cite item

Full Text

Abstract

Introduction: Ensuring the safety of ready-to-eat food products requires contamination control at all stages of their life cycle—from the procurement of food raw materials to storage and distribution. In light of the introduction of new technologies and materials in the chemical, pharmaceutical, food, and agricultural sectors, as well as updated data on the toxicity of certain compounds, there is a growing need to regularly update information on potential food contaminants, methods for their detection, and strategies for reducing contamination levels.Purpose: To provide an updated overview of chemical contamination in food products, covering key stages of its formation (raw materials, production, packaging, storage), modern methods of contaminant detection, and approaches to reducing their presence.Materials and Methods: The literature search was conducted in the Scopus, ScienceDirect, PubMed, and RSCI databases, covering sources published between 2011 and 2024. The following descriptors were used: chemical contamination, chemical risk/hazards, food raw materials, ready-to-eat products/dishes, processed food. Source selection followed the PRISMA-ScR protocol, using Mendeley as a reference manager. Microsoft Excel was used for bibliographic mapping and data visualization. Additional information was drawn from the Russian national veterinary information system Vetis (component “Vesta”) and official reports from relevant regulatory agencies in Russia and abroad (including Rospotrebnadzor and ANSES).Results: Against the backdrop of rapid technological advancement, the range of chemical contaminants has expanded significantly, particularly due to the inclusion of micro- and nanoplastics as well as transformation products of pharmaceutical substances and pesticides. Analysis of antibiotic residues in livestock raw materials and processed products (2020–2024) indicates frequent detection of fluoroquinolones, tetracyclines, penicillins, amphenicols, and sulfonamides. A promising direction involves the use of natural bioactive compounds that not only help reduce contamination (especially from polycyclic aromatic hydrocarbons (PAHs) and nitrosamines) but also serve as alternatives to synthetic food additives. The need for highly sensitive and reliable analytical methods capable of detecting both long-established and emerging contaminants has been clearly identified.Conclusion: The results of this scoping review may be applied in the planning and implementation of governmental and industrial food safety monitoring programs, as well as in the development of improved chemical safety control measures for food production facilities.

About the authors

Olga I. Lavrukhina

The Russian State Center for Animal Feed and Drug Standardization and Quality

Email: hamsster@mail.ru
ORCID iD: 0000-0001-6248-5726
SPIN-code: 6238-3898

Dmitry A. Makarov

The Russian State Center for Animal Feed and Drug Standardization and Quality

Email: phorez@yandex.ru
ORCID iD: 0000-0003-3834-0695
SPIN-code: 7545-8829

Elizaveta S. Kozeicheva

The Russian State Center for Animal Feed and Drug Standardization and Quality

Email: byrbon-13@yandex.ru
ORCID iD: 0000-0001-6609-8256
SPIN-code: 1545-3797

Tatiana V. Balagula

Federal Service for Veterinary and Phytosanitary Surveillance

Email: t.balagula2011@yandex.ru
ORCID iD: 0000-0003-0583-4277

Alexey V. Tretyakov

The Russian State Center for Animal Feed and Drug Standardization and Quality

Email: a.tretyakov@vgnki.ru
ORCID iD: 0000-0002-4984-9502
SPIN-code: 2054-9696

Maria A. Gergel

The Russian State Center for Animal Feed and Drug Standardization and Quality

Email: m.gergel@vgnki.ru
ORCID iD: 0000-0002-8033-1154

Evgeniya A. Lozovaya

The Russian State Center for Animal Feed and Drug Standardization and Quality

Email: lozovaya@vgnki.ru
ORCID iD: 0009-0004-8557-0607

References

  1. Амелин, В. Г., Шаока, З. А. Ч., & Большаков, Д. С. (2023). Идентификация и аутентификация сухого коровьего молока с использованием смартфона и хемометрического анализа. Вестник Московского Университета. Серия 2: Химия, 64(№1, 2023), 49–59. https://doi.org/10.55959/MSU0579-9384-2-2023-64-1-49-59
  2. Amelin, V. G., Shogah, Z. A. Ch., & Bolshakov, D. S. (2023). Identification and authentication of cow’s milk powder using a smartphone and chemometric analysis. Vestnik Moskovskogo universiteta. Seriya 2. Chemistry, 64(No1), 49–59. https://doi.org/10.55959/MSU0579-9384-2-2023-64-1-49-59 (In Russ.)
  3. Амелин, В. Г., Шаока, З. А. Ч., Большаков, Д. С., & Третьяков, А. В. (2023). Идентификация и аутентификация растительных масел методом цифровой цветометрии и хемометрического анализа. Заводская Лаборатория. Диагностика Материалов, 89(2(I)), 5–12. https://doi.org/10.26896/1028-6861-2023-89-2-I-5-12
  4. Amelin, V. G., Shogah, Z. A. Ch., Bolshakov, D. S., & Tretyakov, A. V. (2023). Identification and autentification of vegetable oils by digital colorymetry and chemometric analysis. Industrial Laboratory. Diagnostics of Materials, 89(2(I)), 5–12. https://doi.org/10.26896/1028-6861-2023-89-2-I-5-12 (In Russ.)
  5. Амелин, В. Г., Шаока, З. А. Ч., Большаков, Д. С., Третьяков, А. В., Нестеренко, И. С., & Киш, Л. К. (2023). Установление порчи морепродуктов методом цифровой цветометрии индикаторных тест-систем. Заводская Лаборатория. Диагностика Материалов, 89(9), 25–33. https://doi.org/10.26896/1028-6861-2023-89-9-25-33
  6. Amelin, V. G., Shogah, Z. A. Ch., Bolshakov, D. S., Tretyakov, A. V., Nesterenko, I. S., & Kish, L. K. (2023). Determination of seafood spoilage by digital colorimetry of indicator test systems. Industrial laboratory. Diagnostics of materials, 89(9), 25–33. https://doi.org/10.26896/1028-6861-2023-89-9-25-33 (In Russ.)
  7. Балагула, Т. В., Лаврухина, О. И., Батов, И. В., Макаров, Д. А., & Третьяков, А. В. (2023). Антибиотики в ветеринарии: Загрязнение продукции животноводства. Международный Вестник Ветеринарии, 4, 174–179. https://doi.org/10.52419/issn2072-2419.2022.4.174
  8. Balagula, T. V., Lavrukhina, O. I., Batov, I. V., Makarov, D. A., & Tretyakov, A. V. (2023). Antibiotics in veterinary medicine: contamination of livestock production. International Journal of Veterinary Medicine, 4, 174–179. https://doi.org/10.52419/issn2072-2419.2022.4.174 (In Russ.)
  9. Грачев С.А., Третьяков А.В., Амелин В.Г. (2023) Оптимизация условий пробоподготовки при определении общего содержания мышьяка в рыбе и морепродуктах методом атомно-абсорбционной спектрометрии с электротермической атомизацией. Заводская лаборатория. Диагностика материалов, 89(1), 5–10. https://doi.org/10.26896/1028-6861-2023-89-1-5-10
  10. Grachev, S. A., Tretyakov, A. V., & Amelin, V. G. (2023). Optimization of sample preparation conditions in the determination of total arsenic in fish and seafoods by atomic absorption spectrometry with electrothermal atomization. Industrial Laboratory. Diagnostics of Materials, 89(1), 5–10. https://doi.org/10.26896/1028-6861-2023-89-1-5-10 (In Russ.)
  11. Зайцева, Н. В., Уланова, Т. С., Карнажицкая, Т. Д., Зорина, А. С., & Пермякова, Т. С. (2018). Определение фталатов в соковой продукции методом высокоэффективной жидкостной хроматографии/масс-спектрометрии. Вопросы Питания, 87(6), 117–124. https://doi.org/10.24411/0042-8833-2018-10073
  12. Zaytseva, N. V, Ulanova, T. S., Karnazhitskaya, T. D., Zorina, A. S., & Permyakova, T. S. (2018). Determination of phthalates in juice product by high-performance liquid chromatography/mass spectrometry. Voprosy Pitaniia, 87(6), 117–124. https://doi.org/10.24411/0042-8833-2018-10073 (In Russ.)
  13. Киш, Л. К., Третьяков, А. В., Лаврухина, О. И., Амелин, В. Г., Гергель, М. А., & Мищенко, Н. В. (2022). Продукты трансформации пестицидов и антибактериальных препаратов в пищевой продукции и продовольственном сырье (аналитический обзор). Теоретическая и Прикладная Экология, 2, 15–25. https://doi.org/10.25750/1995-4301-2022-2-015-025
  14. Kish, L. K., Tretyakov, A. V., Lavrukhina, O. I., Amelin, V. G., Gergel, M. A., & Mishchenko, N. V. (2022). Transformation products of pesticides and veterinary drugs in food and raw materials (analytical review). Theoretical and Applied Ecology, 2, 15–25. https://doi.org/10.25750/1995-4301-2022-2-015-025 (In Russ.)
  15. Лаврухина, О. И., Амелин, В. Г., Прохватилова, Л. Б., & Ручнова, О. И. (2017). Риски загрязнения пищевых продуктов на различных стадиях их производства. Ветеринария Сегодня, 22(3), 33–39.
  16. Lavrukhina, O. I., Amelin, V. G., Prokhvatilova, L. B., & Ruchnova, O. I. (2017). Food product contamination risks at different stages of production. Veterinary Science Today, 22(3), 33–39. (In Russ.)
  17. Макаров, Д. А., Козеичева, Е. С., & Хишов, А. С. (2023). Проблема загрязнения антибиотиками продукции растительного происхождения. Контроль Качества Продукции, 6, 36–41.
  18. Makarov, D. A., Kozeicheva, E. S., & Shishov, A. S. (2023). Antibiotic contamination of plant products. Production Quality Control, 6, 36-41.
  19. Морев, А.А., & Виноградова, О.В. (2019). Определение макро- и микроэлементов в молочных, мясных, рыбных продуктах питания методом атомно-эмиссионной спектрометрии с микроволновой плазмой. Заводская лаборатория. Диагностика материалов, 85(3):14–19. https://doi.org/10.26896/1028-6861-2019-85-3-14-19
  20. Morev, A. A., & Vinogradova, O. V. (2019). Determination of macro- and microelements in dairy, meat, and fish food products using microwave plasma – atomic emission spectroscopy. Industrial Laboratory. Diagnostics of Materials, 85(3), 14–19. https://doi.org/10.26896/1028-6861-2019-85-3-14-19 (In Russ.)
  21. Чернова, А. В., & Петроченкова, А. В. (2023). Регламентирование содержания контаминанта акриламида в пищевой продукции. Научные Труды Дальрыбвтуза, 63(1), 20–27.
  22. Chernova, A.V., & Petrochenkova, A.V. (2023). Regulation of the content of the contaminant acrylamide in food products. Scientific Journal of the Far Eastern State Technical Fisheries University, 63(1), 20–27. (in Russ.)
  23. Abraham, A., & Rambla-Alegre, M. (2017). Marine toxins analysis for consumer protection. Comprehensive Analytical Chemistry, 78, 343–378. https://doi.org/10.1016/bs.coac.2017.07.004
  24. Adebo, O. A., Kayitesi, E., Adebiyi, J. A., Gbashi, S., Temba, M. C., Lasekan, A., Phoku, J. Z., & Njobeh, P. B. (2017). Mitigation of acrylamide in foods: An African perspective. In B. S. R. Reddy (Ed.), Acrylic polymers in healthcare. InTech. https://doi.org/10.5772/intechopen.68982
  25. Alamri, M. S., Qasem, A. A. A., Mohamed, A. A., Hussain, S., Ibraheem, M. A., Shamlan, G., Alqah, H. A., & Qasha, A. S. (2021). Food packaging’s materials: A food safety perspective. Saudi Journal of Biological Sciences, 28(8), 4490–4499. https://doi.org/10.1016/j.sjbs.2021.04.047
  26. Albaseer, S. S. (2019). Factors controlling the fate of pyrethroids residues during post-harvest processing of raw agricultural crops: An overview. In Food Chemistry (Vol. 295, pp. 58–63). Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2019.05.109
  27. Amelin, V. G., Emelyanov, O. E., Tretyakov, A. V., & Kish, L. K. (2024). Identification and detection of adulterated butter by colorimetry and Near-IR-Spectroscopy. Journal of Applied Spectroscopy, 91(4), 826–834. https://doi.org/10.1007/s10812-024-01790-0
  28. Amelin, V. G., Korotkov, A. G., & Andoralov, A. M. (2016). Identification and determination of 492 contaminants of different classes in food and feed by high-resolution mass spectrometry using the standard addition method. Journal of AOAC INTERNATIONAL, 99(6), 1600–1618. https://doi.org/10.5740/jaoacint.16-0069
  29. Amelin, V. G., Lavrukhina O. I. (2017) Food safety assurance using methods of chemical analysis. Journal of Analytical Chemistry, 72(1), 1–46. https://doi.org/10.1134/S1061934817010038
  30. Amelin, V. G., Shogah, Z. A. Ch., & Tretyakov, A. V. (2024). Analyzing dairy products: Measuring milk fat mass fraction and detecting adulteration using the PhotoMetrix Pro® Smartphone App. Journal of Analytical Chemistry, 79(1), 50–56. https://doi.org/10.1134/S1061934824010039
  31. Amyot, M., Husser, E., St-Fort, K., & Ponton, D. E. (2023). Effect of cooking temperature on metal concentrations and speciation in fish muscle and seal liver. Ecotoxicology and Environmental Safety, 262. https://doi.org/10.1016/j.ecoenv.2023.115184
  32. Artiaga, G., Ramos, K., Ramos, L., Cámara, C., & Gómez-Gómez, M. (2015). Migration and characterisation of nanosilver from food containers by AF4-ICP-MS. Food Chemistry, 166, 76–85. https://doi.org/10.1016/j.foodchem.2014.05.139
  33. Baesu, A., & Bayen, S. (2022). Application of nontarget analysis and high-resolution mass spectrometry for the identification of thermal transformation products of oxytetracycline in Pacific White shrimp. Journal of Food Protection, 85(10), 1469–1478. https://doi.org/10.4315/JFP-22-128
  34. Bai, M., Tang, R., Li, G., She, W., Chen, G., Shen, H., Zhu, S., Zhang, H., & Wu, H. (2022). High-throughput screening of 756 chemical contaminants in aquaculture products using liquid chromatography/quadrupole time-of-flight mass spectrometry. Food Chemistry: X, 15, 100380. https://doi.org/10.1016/j.fochx.2022.100380
  35. Bianco, M., Calvano, C. D., Ventura, G., Losito, I., & Cataldi, T. R. I. (2022). Determination of hidden milk allergens in meat-based foodstuffs by liquid chromatography coupled to electrospray ionization and high-resolution tandem mass spectrometry. Food Control, 131. https://doi.org/10.1016/j.foodcont.2021.108443
  36. Bolshakov, D. S., & Amelin, V. G. (2023). Capillary electrophoresis in assessing the quality and safety of foods. Journal of Analytical Chemistry, 78(7), 815–855. https://doi.org/10.1134/S106193482307002X
  37. Brown, K., Blake, R. S., & Dennany, L. (2022). Electrochemiluminescence within veterinary Science: A review. Bioelectrochemistry, 146. https://doi.org/10.1016/j.bioelechem.2022.108156
  38. Buculei, A., Amariei, S., Oroian, M., Gutt, G., Gaceu, L., & Birca, A. (2014). Metals migration between product and metallic package in canned meat. LWT - Food Science and Technology, 58(2), 364–374. https://doi.org/10.1016/j.lwt.2013.06.003
  39. Bumbudsanpharoke, N., & Ko, S. (2015). Nano-food packaging: An overview of market, migration research, and safety regulations. Journal of Food Science, 80(5), R910–R923. https://doi.org/10.1111/1750-3841.12861
  40. Cao, H., Wang, Z., Meng, J., Du, M., Pan, Y., Zhao, Y., & Liu, H. (2022). Determination of arsenic in Chinese mitten crabs (Eriocheir sinensis): Effects of cooking and gastrointestinal digestion on food safety. Food Chemistry, 393, 133345. https://doi.org/10.1016/j.foodchem.2022.133345
  41. Capita, R., & Alonso-Calleja, C. (2013). Antibiotic-Resistant Bacteria: A Challenge for the Food Industry. Critical Reviews in Food Science and Nutrition, 53(1), 11–48. https://doi.org/10.1080/10408398.2010.519837
  42. Carballo, D., Moltó, J. C., Berrada, H., & Ferrer, E. (2018). Presence of mycotoxins in ready-to-eat food and subsequent risk assessment. Food and Chemical Toxicology, 121, 558–565. https://doi.org/10.1016/j.fct.2018.09.054
  43. CEF. (2015). Scientific оpinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal, 13(1), 3978. https://doi.org/10.2903/j.efsa.2015.3978
  44. Cheyns, K., Waegeneers, N., Van de Wiele, T., & Ruttens, A. (2017). Arsenic release from foodstuffs upon food preparation. Journal of Agricultural and Food Chemistry, 65(11), 2443–2453. https://doi.org/10.1021/acs.jafc.6b05721
  45. Constantinou, M., Louca-Christodoulou, D., & Agapiou, A. (2021). Method validation for the determination of 314 pesticide residues using tandem MS systems (GC–MS/MS and LC-MS/MS) in raisins: Focus on risk exposure assessment and respective processing factors in real samples (a pilot survey). Food Chemistry, 360. https://doi.org/10.1016/j.foodchem.2021.129964
  46. CONTAM. (2016a). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA Journal, 14(6). https://doi.org/10.2903/j.efsa.2016.4501
  47. CONTAM. (2016b). Risks for human health related to the presence of 3‐ and 2‐monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA Journal, 14(5), 4426. https://doi.org/10.2903/j.efsa.2016.4426
  48. Crews, C., Chiodini, A., Granvogl, M., Hamlet, C., Hrnčiřík, K., Kuhlmann, J., Lampen, A., Scholz, G., Weisshaar, R., Wenzl, T., Jasti, P. R., & Seefelder, W. (2013). Analytical approaches for MCPD esters and glycidyl esters in food and biological samples: a review and future perspectives. Food Additives & Contaminants: Part A, 30(1), 11–45. https://doi.org/10.1080/19440049.2012.720385
  49. Cuadrado, C., Sanchiz, A., Arribas, C., Pedrosa, M. M., Gamboa, P., Betancor, D., Blanco, C., Cabanillas, B., & Linacero, R. (2023). Mitigation of peanut allergenic reactivity by combined processing: Pressured heating and enzymatic hydrolysis. Innovative Food Science and Emerging Technologies, 86. https://doi.org/10.1016/j.ifset.2023.103383
  50. Cunningham, B. E., Sharpe, E. E., Brander, S. M., Landis, W. G., & Harper, S. L. (2023). Critical gaps in nanoplastics research and their connection to risk assessment. Frontiers in Toxicology, 5, 1154538. https://doi.org/10.3389/ftox.2023.1154538
  51. Custodio-Mendoza, J. A., Sendón, R., de Quirós, A. R.-B., Lorenzo, R. A., & Carro, A. M. (2023). Development of a QuEChERS method for simultaneous analysis of 3-Monochloropropane-1,2-diol monoesters and Glycidyl esters in edible oils and margarine by LC-APCI-MS/MS. Analytica Chimica Acta, 1239, 340712. https://doi.org/10.1016/j.aca.2022.340712
  52. Darwish, W. S., Chiba, H., El-Ghareeb, W. R., Elhelaly, A. E., & Hui, S. P. (2019). Determination of polycyclic aromatic hydrocarbon content in heat-treated meat retailed in Egypt: Health risk assessment, benzopyrene induced mutagenicity and oxidative stress in human colon (CaCo-2) cells and protection using rosmarinic and ascorbic acids. Food Chemistry, 290, 114–124. https://doi.org/10.1016/j.foodchem.2019.03.127
  53. Deng, S., Bai, X., Li, Y., Wang, B., Kong, B., Liu, Q., & Xia, X. (2021). Changes in moisture, colour, residual nitrites and N-nitrosamine accumulation of bacon induced by nitrite levels and dry-frying temperatures. Meat Science, 181, 108604. https://doi.org/10.1016/j.meatsci.2021.108604
  54. Di Bella, G., Potortì, A. G., Lo Turco, V., Saitta, M., & Dugo, G. (2014). Plasticizer residues by HRGC–MS in espresso coffees from capsules, pods and moka pots. Food Control, 41, 185–192. https://doi.org/10.1016/j.foodcont.2014.01.026
  55. Dias, C., Costa, J., Mafra, I., Fernandes, D., Brandão, A. T. S. C., Silva, A. F., Pereira, C. M., & Costa, R. (2024). Electrochemical immunosensor for point-of-care detection of soybean Gly m TI allergen in foods. Talanta, 268, 125284. https://doi.org/10.1016/j.talanta.2023.125284
  56. Ding, T., & Li, Y. (2024). Biogenic amines are important indices for characterizing the freshness and hygienic quality of aquatic products: A review. In LWT (Vol. 194, p. 115793). Academic Press. https://doi.org/10.1016/j.lwt.2024.115793
  57. Djordjevic, T., & Djurovic-Pejcev, R. (2016). Food processing as a means for pesticide residue dissipation. Pesticidi i Fitomedicina, 31(3–4), 89–105. https://doi.org/10.2298/pif1604089d
  58. Dong, X., & Raghavan, V. (2022). Recent advances of selected novel processing techniques on shrimp allergenicity: A review. Trends in Food Science & Technology, 124, 334–344. https://doi.org/10.1016/j.tifs.2022.04.024
  59. Drewnowska, M., Sąpór, A., Jarzyńska, G., Nnorom, I. C., Sajwan, K. S., & Falandysz, J. (2012). Mercury in Russula mushrooms: Bioconcentration by Yellow-ocher Brittle Gills Russula ochroleuca. Journal of Environmental Science and Health, Part A, 47(11), 1577–1591. https://doi.org/10.1080/10934529.2012.680420
  60. Duedahl-Olesen, L., Wilde, A. S., Dagnæs-Hansen, M. P., Mikkelsen, A., Olesen, P. T., & Granby, K. (2022). Acrylamide in commercial table olives and the effect of domestic cooking. Food Control, 132, 108515. https://doi.org/10.1016/j.foodcont.2021.108515
  61. Dykes, G. A., Coorey, R., Ravensdale, J. T., & Sarjit, A. (2019). Phosphates. In L. Melton, F. Shahidi, & P. Varelis (Eds.), Encyclopedia of food chemistry (pp. 218–224). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.21583-7
  62. Edna Hee, P. T., Liang, Z., Zhang, P., & Fang, Z. (2024). Formation mechanisms, detection methods and mitigation strategies of acrylamide, polycyclic aromatic hydrocarbons and heterocyclic amines in food products. Food Control, 158, 110236. https://doi.org/10.1016/j.foodcont.2023.110236
  63. El Qacemi, M., Rendine, S., & Maienfisch, P. (2018). Recent applications of fluorine in crop protection-new discoveries originating from the unique heptafluoroisopropyl group. In G. Haufe & F. R. Leroux (Eds.), Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals Progress in Fluorine Science Series (pp. 607–629). Elsevier. https://doi.org/10.1016/B978-0-12-812733-9.00017-9
  64. El-Saber Batiha, G., Hussein, D. E., Algammal, A. M., George, T. T., Jeandet, P., Al-Snafi, A. E., Tiwari, A., Pagnossa, J. P., Lima, C. M., Thorat, N. D., Zahoor, M., El-Esawi, M., Dey, A., Alghamdi, S., Hetta, H. F., & Cruz-Martins, N. (2021). Application of natural antimicrobials in food preservation: Recent views. Food Control, 126, 108066. https://doi.org/10.1016/j.foodcont.2021.108066
  65. Eymar, E., Garcia-Delgado, C., & Esteban, R. M. (2016). Food Poisoning: Classification. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 56–66). Academic Press. https://doi.org/10.1016/B978-0-12-384947-2.00317-2
  66. Fan, M., Xu, X., Lang, W., Wang, W., Wang, X., Xin, A., Zhou, F., Ding, Z., Ye, X., & Zhu, B. (2023). Toxicity, formation, contamination, determination and mitigation of acrylamide in thermally processed plant-based foods and herbal medicines: A review. Ecotoxicology and Environmental Safety, 260. https://doi.org/10.1016/j.ecoenv.2023.115059
  67. FAO. (2017). Food safety risk management. Evidence-informed policies and decisions, considering multiple factors. In 4 - Food safety and quality series. FAO. http://www.fao.org/3/i8240en/I8240EN.pdf
  68. FAO/WHO. (2013). Public health risks of histamine and other biogenic amines from fish and fishery products. https://www.fao.org/fileadmin/user_upload/agns/pdf/Histamine/Histamine_AdHocfinal.pdf
  69. FAO/WHO. (2024). Report 2023: Pesticide residues in food – Joint FAO/WHO meeting on pesticide residues. https://doi.org/10.4060/cc9755en
  70. Fong, F. L. Y., El-Nezami, H., & Sze, E. T. P. (2021). Biogenic amines – Precursors of carcinogens in traditional Chinese fermented food. NFS Journal, 23, 52–57. https://doi.org/10.1016/j.nfs.2021.04.002
  71. Fujii, Y., Harada, K. H., Nakamura, T., Kato, Y., Ohta, C., Koga, N., Kimura, O., Endo, T., Koizumi, A., & Haraguchi, K. (2020). Perfluorinated carboxylic acids in edible clams: A possible exposure source of perfluorooctanoic acid for Japanese population. Environmental Pollution, 263, 114369. https://doi.org/10.1016/j.envpol.2020.114369
  72. Gajda, A., Bladek, T., Gbylik-Sikorska, M., & Posyniak, A. (2017). The influence of cooking procedures on doxycycline concentration in contaminated eggs. Food Chemistry, 221, 1666–1670. https://doi.org/10.1016/j.foodchem.2016.10.121
  73. Gallardo-Ramos, J. A., Marín-Sáez, J., Sanchis, V., Gámiz-Gracia, L., García-Campaña, A. M., Hernández-Mesa, M., & Cano-Sancho, G. (2024). Simultaneous detection of mycotoxins and pesticides in human urine samples: A 24-h diet intervention study comparing conventional and organic diets in Spain. Food and Chemical Toxicology, 188, 114650. https://doi.org/10.1016/j.fct.2024.114650
  74. Ganjeh, A. M., Moreira, N., Pinto, C. A., Casal, S., & Saraiva, J. A. (2024). The effects of high-pressure processing on biogenic amines in food: A review. Food and Humanity, 2, 100252. https://doi.org/10.1016/j.foohum.2024.100252
  75. Ghahremani, M.-H., Ghazi-Khansari, M., Farsi, Z., Yazdanfar, N., Jahanbakhsh, M., & Sadighara, P. (2024). Bisphenol A in dairy products, amount, potential risks, and the various analytical methods, a systematic review. Food Chemistry: X, 21, 101142. https://doi.org/10.1016/j.fochx.2024.101142
  76. Gmoshinski, I. V., Shipelin, V. A., Kolobanov, A. I., Sokolov, I. E., Maisaya, K. Z., & Khotimchenko, S. A. (2023). Methods for the identification and quantification of microplastics in foods (a review). Problems of Nutrition, 92(5), 87–102. https://doi.org/10.33029/0042-8833-2023-92-5-87-102
  77. Goh, K. M., Wong, Y. H., Tan, C. P., & Nyam, K. L. (2021). A summary of 2-, 3-MCPD esters and glycidyl ester occurrence during frying and baking processes. Current Research in Food Science, 4, 460–469. https://doi.org/10.1016/j.crfs.2021.07.002
  78. Gorecki, S., Bemrah, N., Roudot, A.-C., Marchioni, E., Le Bizec, B., Faivre, F., Kadawathagedara, M., Botton, J., & Rivière, G. (2017). Human health risks related to the consumption of foodstuffs of animal origin contaminated by bisphenol A. Food and Chemical Toxicology, 110, 333–339. https://doi.org/10.1016/j.fct.2017.10.045
  79. Grusie, T., Cowan, V., Singh, J., McKinnon, J., & Blakley, B. (2018). Proportions of predominant Ergot alkaloids (Claviceps purpurea) detected in Western Canadian grains from 2014 to 2016. World Mycotoxin Journal, 11(2), 259–264. https://doi.org/10.3920/WMJ2017.2241
  80. Haque, M. A., Wang, Y., Shen, Z., Li, X., Saleemi, M. K., & He, C. (2020). Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microbial Pathogenesis, 142, 104095. https://doi.org/10.1016/j.micpath.2020.104095
  81. Hassoun, A., Pasti, L., Chenet, T., Rusanova, P., Smaoui, S., Aït-Kaddour, A., & Bono, G. (2023). Detection methods of micro and nanoplastics. In F. Özogul (Ed.), Advances in food and nutrition research (Vol. 103, pp. 175–227). Academic Press. https://doi.org/10.1016/bs.afnr.2022.08.002
  82. Heo, D.-G., Lee, D.-C., Kwon, Y.-M., Seol, M.-J., Moon, J. S., Chung, S. M., & Kim, J.-H. (2022). Simultaneous determination of perfluorooctanoic acid and perfluorooctanesulfonic acid in Korean sera using LC-MS/MS. Journal of Chromatography B, 1192, 123138. https://doi.org/10.1016/j.jchromb.2022.123138
  83. Hernandez-Ledesma, B., & Herrero, M. (Eds.). (2013). Bioactive Compounds from Marine Foods: Plant and Animal Sources. Wiley-Blackwell.
  84. Huang, J. Y., Li, X., & Zhou, W. (2015). Safety assessment of nanocomposite for food packaging application. Trends in Food Science & Technology, 45(2), 187–199. https://doi.org/10.1016/j.tifs.2015.07.002
  85. Huang, M., & Penning, T. M. (2014). Processing Contaminants: Polycyclic Aromatic Hydrocarbons (PAHs). In Y. Motarjemi (Ed.), Encyclopedia of food safety (Vol. 2, pp. 416–423). Academic Press. https://doi.org/10.1016/B978-0-12-378612-8.00212-2
  86. Huang, Z., Qu, Y., Hua, X., Wang, F., Jia, X., & Yin, L. (2023). Recent advances in soybean protein processing technologies: A review of preparation, alterations in the conformational and functional properties. International Journal of Biological Macromolecules, 248, 125862. https://doi.org/10.1016/j.ijbiomac.2023.125862
  87. Iqbal, S. Z., Rabbani, T., Asi, M. R., & Jinap, S. (2014). Assessment of aflatoxins, ochratoxin A and zearalenone in breakfast cereals. Food Chemistry, 157, 257–262. https://doi.org/10.1016/j.foodchem.2014.01.129
  88. Izzo, L., Narváez, A., Castaldo, L., Gaspari, A., Rodríguez-Carrasco, Y., Grosso, M., & Ritieni, A. (2022). Multiclass and multi-residue screening of mycotoxins, pharmacologically active substances, and pesticides in infant milk formulas through ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry analysis. Journal of Dairy Science, 105(4), 2948–2962. https://doi.org/10.3168/jds.2021-21123
  89. Izzo, L., Rodríguez-Carrasco, Y., Tolosa, J., Graziani, G., Gaspari, A., & Ritieni, A. (2020). Target analysis and retrospective screening of mycotoxins and pharmacologically active substances in milk using an ultra-high-performance liquid chromatography/high-resolution mass spectrometry approach. Journal of Dairy Science, 103(2), 1250–1260. https://doi.org/10.3168/jds.2019-17277
  90. Jia, Q., Liao, G., Chen, L., Qian, Y., Yan, X., & Qiu, J. (2024). Pesticide residues in animal-derived food: Current state and perspectives. Food Chemistry, 438, 137974. https://doi.org/10.1016/j.foodchem.2023.137974
  91. Jooste, P. J., Anelich, L., & Motarjemi, Y. (2014). Safety of food and beverages: Milk and dairy products. In Y. Motarjemi (Ed.), Encyclopedia of food safety (Vol. 3, pp. 285–296). Academic Press. https://doi.org/10.1016/B978-0-12-378612-8.00286-9
  92. Kobun, R. (Ed.). (2021). Biosensor technology to detect chemical contamination in food. In Advanced food fnalysis tools (pp. 127–146). Academic Press. https://doi.org/10.1016/B978-0-12-820591-4.00007-4
  93. Kohli, G. S., Papiol, G. G., Rhodes, L. L., Harwood, D. T., Selwood, A., Jerrett, A., Murray, S. A., & Neilan, B. A. (2014). A feeding study to probe the uptake of Maitotoxin by snapper (Pagrus auratus). Harmful Algae, 37, 125–132. https://doi.org/10.1016/j.hal.2014.05.018
  94. Kovalchuk, Y., Podurets, A., Osmolovskaya, O., Nugbienyo, L., & Bulatov, A. (2024). Layered double hydroxide nanoparticles for a smartphone digital image colorimetry-based determination of fluoride ions in water, milk and dental products. Food Chemistry, 438, 137999. https://doi.org/10.1016/j.foodchem.2023.137999
  95. Kumar, N., Singh, A., Sharma, D. K., & Kishore, K. (2019). Toxicity of food additives. In R. L. Singh & S. Mondal (Eds.), Food safety and human health (pp. 67–98). Academic Press. https://doi.org/10.1016/B978-0-12-816333-7.00003-5
  96. Kuswandi, B., Futra, D., & Heng, L. Y. (2017). Nanosensors for the Detection of Food Contaminants. In A. E. Oprea & A. M. Grumezescu (Eds.), Nanotechnology applications in food: Flavor, stability, nutrition and safety (pp. 307–333). Academic Press. https://doi.org/10.1016/B978-0-12-811942-6.00015-7
  97. Lambré, C., Barat Baviera, J. M., Bolognesi, C., Chesson, A., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., Lampi, E., Mengelers, M., Mortensen, A., Rivière, G., Silano (until December †), V., Steffensen, I., Tlustos, C., Vernis, L., Zorn, H., Batke, M., Bignami, M., … Van Loveren, H. (2023). Re‐evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA Journal, 21(4), 6857. https://doi.org/10.2903/j.efsa.2023.6857
  98. Leal, J. F., & Cristiano, M. L. S. (2022). Marine paralytic shellfish toxins: Chemical properties, mode of action, newer analogues, and structure-toxicity relationship. Natural Product Reports, 39(1), 33–57. https://doi.org/10.1039/d1np00009h
  99. Lee, J.-G., Kim, S.-Y., Moon, J.-S., Kim, S.-H., Kang, D.-H., & Yoon, H.-J. (2016). Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chemistry, 199, 632–638. https://doi.org/10.1016/j.foodchem.2015.12.017
  100. Leigh, J., & MacMahon, S. (2017). Occurrence of 3-monochloropropanediol esters and glycidyl esters in commercial infant formulas in the United States. Food Additives & Contaminants: Part A, 34(3), 356–370. https://doi.org/10.1080/19440049.2016.1276304
  101. Li, J., Chen, S., Li, H., Liu, X., Cheng, J., & Ma, L. Q. (2021). Arsenic bioaccessibility in rice grains via modified physiologically-based extraction test (MPBET): Correlation with mineral elements and comparison with As relative bioavailability. Environmental Research, 198, 111198. https://doi.org/10.1016/j.envres.2021.111198
  102. Li, T., Li, J., Wang, J., Xue, K. S., Su, X., Qu, H., Duan, X., & Jiang, Y. (2024). The occurrence and management of fumonisin contamination across the food production and supply chains. Journal of Advanced Research, 60, 13–26. https://doi.org/10.1016/j.jare.2023.08.001
  103. Lin, Q.-B., Li, H., Zhong, H.-N., Zhao, Q., Xiao, D.-H., & Wang, Z.-W. (2014). Migration of Ti from nano-TiO2-polyethylene composite packaging into food simulants. Food Additives & Contaminants: Part A, 1–7. https://doi.org/10.1080/19440049.2014.907505
  104. Ling, M.-P., Wu, C.-H., Chen, S.-C., Chen, W.-Y., Chio, C.-P., Cheng, Y.-H., & Liao, C.-M. (2014). Probabilistic framework for assessing the arsenic exposure risk from cooked fish consumption. Environmental Geochemistry and Health, 36(6), 1115–1128. https://doi.org/10.1007/s10653-014-9621-8
  105. List of highly hazardous pesticides. (2024, December). Pesticide Action Network International. https://pan-international.org/wp-content/uploads/PAN_HHP_List.pdf
  106. Liu, Y., Huang, Y., Li, L., Xiong, Y., Tong, L., Wang, F., Fan, B., & Gong, J. (2023). Effect of different agricultural conditions, practices, and processing on levels of total arsenic and species in cereals and vegetables: A review. Food Control, 152, 109876. https://doi.org/10.1016/j.foodcont.2023.109876
  107. Lo Turco, V., Di Bella, G., Potortì, A. G., Fede, M. R., & Dugo, G. (2015). Determination of plasticizer residues in tea by solid phase extraction–gas chromatography–mass spectrometry. European Food Research and Technology, 240(2), 451–458. https://doi.org/10.1007/s00217-014-2344-3
  108. Luo, Q., Liu, Z., Yin, H., Dang, Z., Wu, P., Zhu, N., Lin, Z., & Liu, Y. (2018). Migration and potential risk of trace phthalates in bottled water: A global situation. Water Research, 147, 362–372. https://doi.org/10.1016/j.watres.2018.10.002
  109. Mahato, D. K., Kamle, M., Sharma, B., Pandhi, S., Devi, S., Dhawan, K., Selvakumar, R., Mishra, D., Kumar, A., Arora, S., Singh, N. A., & Kumar, P. (2021). Patulin in food: A mycotoxin concern for human health and its management strategies. Toxicon, 198, 12–23. https://doi.org/10.1016/j.toxicon.2021.04.027
  110. Manav, Ö. G., Dinç-Zor, Ş., & Alpdoğan, G. (2019). Optimization of a modified QuEChERS method by means of experimental design for multiresidue determination of pesticides in milk and dairy products by GC–MS. Microchemical Journal, 144, 124–129. https://doi.org/10.1016/j.microc.2018.08.056
  111. Manimekalai, M., Rawson, A., Sengar, A. S., & Kumar, K. S. (2019). Development, optimization, and validation of methods for quantification of veterinary drug residues in complex food matrices using liquid-chromatography – A review. Food Analytical Methods, 12(8), 1823–1837. https://doi.org/10.1007/s12161-019-01512-9
  112. Martín-Gómez, B., Stephen Elmore, J., Valverde, S., Ares, A. M., & Bernal, J. (2024). Recent applications of chromatography for determining microplastics and related compounds (bisphenols and phthalate esters) in food. Microchemical Journal, 197, 109903. https://doi.org/10.1016/j.microc.2024.109903
  113. Mihindukulasuriya, S. D. F., & Lim, L. T. (2014). Nanotechnology development in food packaging: A review. Trends in Food Science and Technology, 40(2), 149–167. https://doi.org/10.1016/j.tifs.2014.09.009
  114. Molina-Garcia, L., Santos, C. S. P., Melo, A., Fernandes, J. O., Cunha, S. C., & Casal, S. (2015). Acrylamide in chips and french fries: A novel and simple method using xanthydrol for its GC-MS determination. Food Analytical Methods, 8(6), 1436–1445. https://doi.org/10.1007/s12161-014-0014-5
  115. Morya, S., Amoah, A. E. D. D., & Snaebjornsson, S. O. (2020). Food poisoning hazards and their consequences over food safety. In P. Chowdhary, A. Raj, D. Verma, & Y. Akhter (Eds.), Microorganisms for sustainable environment and health (pp. 383–400). Elsevier. https://doi.org/10.1016/B978-0-12-819001-2.00019-X
  116. Muaz, K., Riaz, M., Akhtar, S., Park, S., & Ismail, A. (2018). Antibiotic residues in chicken meat: Global prevalence, threats, and decontamination strategies: A review. Journal of Food Protection, 81(4), 619–627. https://doi.org/10.4315/0362-028X.JFP-17-086
  117. Mühlemann, M. (2014). Safety of food and beverages: Dairy products: Cheese. In Y. Motarjemi (Ed.), Encyclopedia of Food Safety (Vol. 3, pp. 297–308). Academic Press. https://doi.org/10.1016/B978-0-12-378612-8.00415-7
  118. Myrtsi, E. D., Koulocheri, S. D., & Haroutounian, S. A. (2023). Α novel method for the efficient simultaneous quantification of 67 phytoestrogens in plants and foodstuffs. Food Bioscience, 56, 103357. https://doi.org/10.1016/j.fbio.2023.103357
  119. Nerín, C., Aznar, M., & Carrizo, D. (2016). Food contamination during food process. Trends in Food Science and Technology, 48, 63–68. https://doi.org/10.1016/j.tifs.2015.12.004
  120. Ni, M., Li, X., Zhang, L., Kumar, V., & Chen, J. (2022). Bibliometric Analysis of the Toxicity of Bisphenol A. International Journal of Environmental Research and Public Health, 19(13), 7886. https://doi.org/10.3390/ijerph19137886
  121. Nyman, P. J., Limm, W., Begley, T. H., & Chirtel, S. J. (2014). Single-Laboratory Validation of a Method for the Determination of Select Volatile Organic Compounds in Foods by Using Vacuum Distillation with Gas Chromatography/Mass Spectrometry. Journal of AOAC INTERNATIONAL, 97(2), 510–520. https://doi.org/10.5740/jaoacint.13-294
  122. Özogul, F., & Hamed, I. (2018). Marine-Based Toxins and Their Health Risk. In I. M. Holban & A. M. Grumezescu (Eds.), Handbook of food bioengineering, Food quality: Balancing health and disease (Vol. 13, pp. 109–144). Academic Press. https://doi.org/10.1016/B978-0-12-811442-1.00003-1
  123. Park, J., Yang, K.-A., Choi, Y., & Choe, J. K. (2022). Novel ssDNA aptamer-based fluorescence sensor for perfluorooctanoic acid detection in water. Environment International, 158, 107000. https://doi.org/10.1016/j.envint.2021.107000
  124. Pasias, I. N., Raptopoulou, K. G., & Proestos, C. (2018). Migration from metal packaging into food. In Reference module in food science. Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.22528-6
  125. Passos, C. P., Ferreira, S. S., Serôdio, A., Basil, E., Marková, L., Kukurová, K., Ciesarová, Z., & Coimbra, M. A. (2018). Pectic polysaccharides as an acrylamide mitigation strategy – Competition between reducing sugars and sugar acids. Food Hydrocolloids, 81, 113–119. https://doi.org/10.1016/j.foodhyd.2018.02.032
  126. Perrone, G., Rodriguez, A., Magistà, D., & Magan, N. (2019). Insights into existing and future fungal and mycotoxin contamination of cured meats. Current Opinion in Food Science, 29, 20–27. https://doi.org/10.1016/j.cofs.2019.06.012
  127. Perugini, M., Zezza, D., Tulini, S. M. R., Abete, M. C., Monaco, G., Conte, A., Olivieri, V., & Amorena, M. (2016). Effect of cooking on total mercury content in Norway lobster and European hake and public health impact. Marine Pollution Bulletin, 109(1), 521–525. https://doi.org/10.1016/j.marpolbul.2016.05.010
  128. Peters, R. J. B., Rivera, Z. H., van Bemmel, G., Marvin, H. J. P., Weigel, S., & Bouwmeester, H. (2014). Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Analytical and Bioanalytical Chemistry. https://doi.org/10.1007/s00216-013-7571-0
  129. Peters, R. J. B., van Bemmel, G., Herrera-Rivera, Z., Helsper, H. P. F. G., Marvin, H. J. P., Weigel, S., Tromp, P. C., Oomen, A. G., Rietveld, A. G., & Bouwmeester, H. (2014). Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. Journal of Agricultural and Food Chemistry, 62(27), 6285–6293. https://doi.org/10.1021/jf5011885
  130. Pilolli, R., Van Poucke, C., De Angelis, E., Nitride, C., de Loose, M., Gillard, N., Huet, A. C., Tranquet, O., Larré, C., Adel-Patient, K., Bernard, H., Mills, E. N. C., & Monaci, L. (2021). Discovery based high resolution MS/MS analysis for selection of allergen markers in chocolate and broth powder matrices. Food Chemistry, 343, 128533. https://doi.org/10.1016/j.foodchem.2020.128533
  131. Planche, C., Ratel, J., Blinet, P., Mercier, F., Angénieux, M., Chafey, C., Zinck, J., Marchond, N., Chevolleau, S., Marchand, P., Dervilly-Pinel, G., Guérin, T., Debrauwer, L., & Engel, E. (2017). Effects of pan cooking on micropollutants in meat. Food Chemistry, 232, 395–404. https://doi.org/10.1016/j.foodchem.2017.03.049
  132. Planque, M., Arnould, T., Dieu, M., Delahaut, P., Renard, P., & Gillard, N. (2016). Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs. Journal of Chromatography A, 1464, 115–123. https://doi.org/10.1016/j.chroma.2016.08.033
  133. Poissant, R., Mariotti, F., Zalko, D., & Membré, J. M. (2023). Ranking food products based on estimating and combining their microbiological, chemical and nutritional risks: Method and application to Ready-To-Eat dishes sold in France. Food Research International, 169, 112939. https://doi.org/10.1016/j.foodres.2023.112939
  134. Pudel, F., Benecke, P., Fehling, P., Freudenstein, A., Matthäus, B., & Schwaf, A. (2011). On the necessity of edible oil refining and possible sources of 3-MCPD and glycidyl esters. 113, 368–373.
  135. Ramos, F., Santos, L., & Barbosa, J. (2017). Nitrofuran veterinary drug residues in chicken eggs. In P. Y. Hester (Ed.), Egg innovations and strategies for improvements (pp. 457–464). Academic Press. https://doi.org/10.1016/B978-0-12-800879-9.00043-3
  136. Rana, M. S., Lee, S. Y., Kang, H. J., & Hur, S. J. (2019). Reducing veterinary drug residues in animal products: A review. Food Science of Animal Resources, 39(5), 687–703. https://doi.org/10.5851/kosfa.2019.e65
  137. Rodriguez-Saona, L., Aykas, D. P., Borba, K. R., & Urtubia, A. (2020). Miniaturization of optical sensors and their potential for high-throughput screening of foods. Current Opinion in Food Science, 31, 136–150. https://doi.org/10.1016/j.cofs.2020.04.008
  138. Saha Turna, N., Chung, R., & McIntyre, L. (2024). A review of biogenic amines in fermented foods: Occurrence and health effects. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24501
  139. Sanchis, Y., Yusà, V., & Coscollà, C. (2017). Analytical strategies for organic food packaging contaminants. In Journal of Chromatography A (Vol. 1490, pp. 22–46). Elsevier B.V. https://doi.org/10.1016/j.chroma.2017.01.076
  140. Santonicola, S., Ferrante, M. C., Di Leo, G., Murru, N., Anastasio, A., & Mercogliano, R. (2018). Study on endocrine disruptors levels in raw milk from cow’s farms: Risk assessment. Italian Journal of Food Safety, 7(3), 7668. https://doi.org/10.4081/ijfs.2018.7668
  141. Schilberg, R. N., Wei, S., Twagirayezu, S., & Neill, J. L. (2021). Conformational dynamics of perfluorooctanoic acid (PFOA) studied by molecular rotational resonance (MRR) spectroscopy. Chemical Physics Letters, 778, 138789. https://doi.org/10.1016/j.cplett.2021.138789
  142. Shruti, V. C., & Kutralam-Muniasamy, G. (2024). Migration testing of microplastics in plastic food-contact materials: Release, characterization, pollution level, and influencing factors. TrAC Trends in Analytical Chemistry, 170, 117421. https://doi.org/10.1016/j.trac.2023.117421
  143. Sin, J. E. V., Shen, P., Teo, G. S., Neo, L. P., Huang, L., Chua, P., Tan, M. W., Wu, Y., Li, A., Er, J. C., & Chan, S. H. (2023). Surveillance of veterinary drug residues in food commonly consumed in Singapore and assessment of dietary exposure. Heliyon, 9(11), e21160. https://doi.org/10.1016/j.heliyon.2023.e21160
  144. Singh, G., Stephan, C., Westerhoff, P., Carlander, D., & Duncan, T. V. (2014). Measurement Methods to Detect, Characterize, and Quantify Engineered Nanomaterials in Foods. Comprehensive Reviews in Food Science and Food Safety, 13(4), 693–704. https://doi.org/10.1111/1541-4337.12078
  145. Singh, L., Agarwal, T., & Simal-Gandara, J. (2023). Summarizing minimization of polycyclic aromatic hydrocarbons in thermally processed foods by different strategies. Food Control, 146, 109514. https://doi.org/10.1016/j.foodcont.2022.109514
  146. Singh, L., Varshney, J. G., & Agarwal, T. (2016). Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chemistry, 199, 768–781. https://doi.org/10.1016/j.foodchem.2015.12.074
  147. Smith, D. J., & Kim, M. K. (2017). Chemical Contamination of Red Meat. In D. Schrenk & A. Cartus (Eds.), Chemical contaminants and residues in food (2nd ed., pp. 451–489). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100674-0.00018-7
  148. Sohail, M., Urooj, Z., Noreen, S., Baig, M. M. F. A., Zhang, X., & Li, B. (2023). Micro- and nanoplastics: Contamination routes of food products and critical interpretation of detection strategies. Science of The Total Environment, 891, 164596. https://doi.org/10.1016/j.scitotenv.2023.164596
  149. Soliño, L., & Costa, P. R. (2018). Differential toxin profiles of ciguatoxins in marine organisms: Chemistry, fate and global distribution. In Toxicon (Vol. 150, pp. 124–143). Elsevier Ltd. https://doi.org/10.1016/j.toxicon.2018.05.005
  150. Song, X., Li, R., Li, H., Hu, Z., Mustapha, A., & Lin, M. (2014). Characterization and Quantification of Zinc Oxide and Titanium Dioxide Nanoparticles in Foods. Food and Bioprocess Technology, 7(2), 456–462. https://doi.org/10.1007/s11947-013-1071-2
  151. Stadler, R. H. (2019). Introduction to the volume: Food adulteration & contamination. In L. Melton, F. Shahidi, & P. Varelis (Eds.), Encyclopedia of food chemistry (pp. 317–319). Academic Press. https://doi.org/10.1016/B978-0-08-100596-5.21783-6
  152. Stadler, R. H., & Theurillat, V. (2017). Heat-Generated Toxicants in foods (acrylamide, MCPD esters, glycidyl esters, furan, and related compounds). In D. Schrenk & A. Cartus (Eds.), Chemical contaminants and residues in food (2nd ed., pp. 171–195). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100674-0.00008-4
  153. Stegelmeier, B. L., Colegate, S. M., & Brown, A. W. (2016). Dehydropyrrolizidine alkaloid toxicity, cytotoxicity, and carcinogenicity. In Toxins (Vol. 8, Issue 12). MDPI AG. https://doi.org/10.3390/toxins8120356
  154. Stella, R., Sette, G., Moressa, A., Gallina, A., Aloisi, A. M., Angeletti, R., & Biancotto, G. (2020). LC-HRMS/MS for the simultaneous determination of four allergens in fish and swine food products. Food Chemistry, 331. https://doi.org/10.1016/j.foodchem.2020.127276
  155. Sun, X., Wang, R., Li, L., Wang, X., & Ji, W. (2021). Online extraction based on ionic covalent organic framework for sensitive determination of trace per- and polyfluorinated alkyl substances in seafoods by UHPLC-MS/MS. Food Chemistry, 362. https://doi.org/10.1016/j.foodchem.2021.130214
  156. Thakali, A., & MacRae, J. D. (2021). A review of chemical and microbial contamination in food: What are the threats to a circular food system? In Environmental Research (Vol. 194). Academic Press Inc. https://doi.org/10.1016/j.envres.2020.110635
  157. Thanushree, M. P., Sailendri, D., Yoha, K. S., Moses, J. A., & Anandharamakrishnan, C. (2019). Mycotoxin contamination in food: An exposition on spices. In Trends in Food Science and Technology (Vol. 93, pp. 69–80). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2019.08.010
  158. Theurillat, X., Mujahid, C., Eriksen, B., Griffin, A., Savage, A., Delatour, T., & Mottier, P. (2023). An LC-MS/MS method for the quantitative determination of 57 per- and polyfluoroalkyl substances at ng/kg levels in different food matrices. Food Additives & Contaminants: Part A, 40(7), 862–877. https://doi.org/10.1080/19440049.2023.2226771
  159. Thomsen, S. T., Assunção, R., Afonso, C., Boué, G., Cardoso, C., Cubadda, F., Garre, A., Kruisselbrink, J. W., Mantovani, A., Pitter, J. G., Poulsen, M., Verhagen, H., Ververis, E., Voet, H. van der, Watzl, B., & Pires, S. M. (2022). Human health risk–benefit assessment of fish and other seafood: a scoping review. In Critical Reviews in Food Science and Nutrition (Vol. 62, Issue 27, pp. 7479–7502). Taylor and Francis Ltd. https://doi.org/10.1080/10408398.2021.1915240
  160. Tian, L., & Bayen, S. (2018). Thermal degradation of chloramphenicol in model solutions, spiked tissues and incurred samples. Food Chemistry, 248, 230–237. https://doi.org/10.1016/j.foodchem.2017.12.043
  161. Tolosa, J., Rodríguez-Carrasco, Y., Ruiz, M. J., & Vila-Donat, P. (2021). Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: A review. In Food and Chemical Toxicology (Vol. 158). Elsevier Ltd. https://doi.org/10.1016/j.fct.2021.112661
  162. Torre, R., Freitas, M., Costa‐Rama, E., Nouws, H. P. A., & Delerue‐Matos, C. (2022). Food allergen control: Tropomyosin analysis through electrochemical immunosensing. Food Chemistry, 396. https://doi.org/10.1016/j.foodchem.2022.133659
  163. Ulanova, T. S., Karnazhitskaya, T. D., Zelenkin, S. E., & Zorina, A. S. (2021). Phthalate analysis in foods for young children using LC-MS method. Problems of Nutrition, 90(2), 128–137. https://doi.org/10.33029/0042-8833-2021-90-2-128-137
  164. Upadhyay, M. K., Shukla, A., Yadav, P., & Srivastava, S. (2019). A review of arsenic in crops, vegetables, animals and food products. Food Chemistry, 276, 608–618. https://doi.org/10.1016/j.foodchem.2018.10.069
  165. Van der Fels-Klerx, H. J., Van Asselt, E. D., Raley, M., Poulsen, M., Korsgaard, H., Bredsdorff, L., Nauta, M., D’agostino, M., Coles, D., Marvin, H. J. P., & Frewer, L. J. (2018). Critical review of methods for risk ranking of food-related hazards, based on risks for human health. In Critical Reviews in Food Science and Nutrition (Vol. 58, Issue 2, pp. 178–193). Taylor and Francis Inc. https://doi.org/10.1080/10408398.2016.1141165
  166. Vidaček, S. (2013). Seafood. In Food Safety Management: A Practical Guide for the Food Industry (pp. 189–212). Elsevier. https://doi.org/10.1016/B978-0-12-381504-0.00008-1
  167. Vitali, C., Peters, R. J. B., Janssen, H. G., & Nielen, M. W. F. (2023). Microplastics and nanoplastics in food, water, and beverages; part I. occurrence. In TrAC - Trends in Analytical Chemistry (Vol. 159). Elsevier B.V. https://doi.org/10.1016/j.trac.2022.116670
  168. Vitali, C., Peters, R. J. B., Janssen, H.-G., Nielen, M. W. F., & Ruggeri, F. S. (2022). Microplastics and nanoplastics in food, water, and beverages, part II. Methods. TrAC Trends in Analytical Chemistry, 157, 116819. https://doi.org/10.1016/j.trac.2022.116819
  169. Wang, R., Sang, P., Guo, Y., Jin, P., Cheng, Y., Yu, H., Xie, Y., Yao, W., & Qian, H. (2023). Cadmium in food: Source, distribution and removal. Food Chemistry, 405, 134666. https://doi.org/10.1016/j.foodchem.2022.134666
  170. Wen, A., Yuan, S., Wang, H., Mi, S., Yu, H., Guo, Y., Xie, Y., Qian, H., & Yao, W. (2024). Molecular insights on the binding of chlortetracycline to bovine casein and its effect on the thermostability of chlortetracycline. Food Chemistry, 432, 137104. https://doi.org/10.1016/j.foodchem.2023.137104
  171. Xia, H., Zhang, H., Zhu, Z., Tong, K. xuan, Chang, Q., Zhang, H., Fan, C., & Chen, H. (2024). Rapid determination of eight biogenic amines in air-dried yak meat by QuEChERS combined with ultra-performance liquid chromatography-mass spectrometry. Journal of Food Composition and Analysis, 133, 106466. https://doi.org/10.1016/j.jfca.2024.106466
  172. Xu, X., Liu, X., Zhang, J., Liang, L., Wen, C., Li, Y., Shen, M., Wu, Y., He, X., Liu, G., & Xu, X. (2023). Formation, migration, derivation, and generation mechanism of polycyclic aromatic hydrocarbons during frying. Food Chemistry, 425, 136485. https://doi.org/10.1016/j.foodchem.2023.136485
  173. Zhang, J., Chen, R., Zhou, H., Wen, D., Lu, Q., Xiong, J., & Wang, C. (2024). Prevalence of aflatoxin B1 in four kinds of fermented soybean-related products used as traditional Chinese food. LWT, 191. https://doi.org/10.1016/j.lwt.2023.115611
  174. Zhang, Y., Zhang, Y., Jia, J., Peng, H., Qian, Q., Pan, Z., & Liu, D. (2023). Nitrite and nitrate in meat processing: Functions and alternatives. Current Research in Food Science, 6, 100470. https://doi.org/10.1016/j.crfs.2023.100470
  175. Zhang, Z., Zhang, H., Tian, D., Phan, A., Seididamyeh, M., Alanazi, M., Ping Xu, Z., Sultanbawa, Y., & Zhang, R. (2024). Luminescent sensors for residual antibiotics detection in food: Recent advances and perspectives. Coordination Chemistry Reviews, 498, 215455. https://doi.org/10.1016/j.ccr.2023.215455
  176. Zhao, L., Szakas, T., Churley, M., & Lucas, D. (2019). Multi-class multi-residue analysis of pesticides in edible oils by gas chromatography-tandem mass spectrometry using liquid-liquid extraction and enhanced matrix removal lipid cartridge cleanup. Journal of Chromatography A, 1584, 1–12. https://doi.org/10.1016/j.chroma.2018.11.022
  177. Zurier, H. S., & Goddard, J. M. (2021). Biodegradation of microplastics in food and agriculture. Current Opinion in Food Science, 37, 37–44. https://doi.org/10.1016/j.cofs.2020.09.001

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».