Artificial intelligence as a driver of business process transformation

Cover Page

Cite item

Abstract

purpose: to identify the specific impact of artificial intelligence technologies on the transformation of business processes in organizations with different operational profiles – from production-oriented to analytical and information-based. Methods: the study employs methods of analysis and synthesis to substantiate the theoretical basis of digital transformation, comparative analysis to interpret empirical data, inductive reasoning to generalize from specific case studies, and simulation modeling to quantitatively assess the effect of artificial intelligence on labor productivity. Findings: the implementation of artificial intelligence can lead to a 20-28% increase in labor productivity depending on the type of organizational activity, as well as reduce task completion time and error rates. Artificial intelligence transforms process architecture, enhances strategic flexibility, and supports the shift from functional to platform-based management models Conclusions: artificial intelligence technologies serve not only as automation tools but also as systemic drivers of business process reorganization. Their transformational potential is reflected in accelerated decision-making, increased adaptability, and the emergence of new models of corporate governance. Achieving sustainable results requires a comprehensive approach, including technological modernization, competence development, and institutional restructuring.

About the authors

D. V Pshichenko

Graduate School of Business; National Research University Higher School of Economics

Email: dmitry.pshychenko@rambler.ru

A. S Gubchenkova

Saint-Petersburg State University of Film and Television

Email: orsag@list.ru

I. Yu Blagova

Peter the Great St. Petersburg Polytechnic University

Email: blagovairina@yandex.ru

N. A Seliverstova

Saint-Petersburg State University of Film and Television

Email: nina@seliverstova.spb.ru

References

  1. Ермакова С.Э., Еникеев И.М., Еникеева Е.М. Актуальные вопросы теории и практики применения технологий искусственного интеллекта в бизнес-процессах // Креативная экономика. 2025. Т. 19. № 5. С. 1253 – 1274. doi: 10.18334/ce.19.5.123109
  2. Ларионова М.В. Тенденции и риски формирования глобального цифрового управления // Вестник международных организаций: образование, наука, новая экономика. 2025. Т. 20. № 1. С. 11 – 41. doi: 10.17323/1996-7845-2025-01-11
  3. Oyekunle D., Boohene D. Digital transformation potential: The role of artificial intelligence in business // International Journal of Professional Business Review: Int. J. Prof. Bus. Rev. 2024. Vol. 9. № 3. P. 1 – 12. doi: 10.26668/businessreview/2024.v9i3.4499
  4. Миндигулова А.А. Феномен искусственного интеллекта: история возникновения и развития // Социология. 2023. № 5. С. 239 – 244.
  5. Smirnov A. Modern methods of backend system performance optimization: algorithmic, architectural, and infrastructural aspects // International Journal of Advanced Research in Science, Communication and Technology. 2025. Vol. 5 (3). P. 262 – 266. doi: 10.48175/IJARSCT-28528
  6. Kitaeva I. Digital technologies in the procurement system: evaluating efficiency in the localization of raw material sources // Eurasian union of scientists. Series: economic and legal sciences. 2025. № 4 (129). P. 11 – 15.
  7. Mukayev T. Intelligent methods for predicting technological risks based on simulation modeling // International Journal of Advanced Trends in Computer Science and Engineering. 2025. Vol. 5 (3). P. 256 – 261.
  8. Зуб А.Т., Петрова К.С. Искусственный интеллект в корпоративном управлении: возможности и границы применения // Государственное управление. Электронный вестник. 2022. № 94. С. 173 – 187. doi: 10.24412/2070-1381-2022-94-173-187
  9. Nazarova Ye. The influence of psychoanalytic practices on leadership and organizational culture // International Journal of Professional Science. 2025. №4(1). P. 71 – 77.
  10. Drogunova Y. The impact of testing practices on the performance and profitability of e-commerce platforms amid growing digital consumption // Professional Bulletin. Information Technology and Security. 2025. № 3. P. 3 – 9.
  11. Mukayev T. Predictive analytics based on machine learning as a tool for cost optimization in operations management // Professional Bulletin. Information Technology and Security. 2025. № 3. P. 47 – 52.
  12. Kitaeva I. Application of predictive analytics for assessing short-term and seasonal demand fluctuations in retail trade // International Journal of Economics, Business and Management Studies. 2025. Vol. 12 (8). P. 7 – 12.
  13. Савченко Ю.Ю. Интеллектуальный капитал и Индустрия 4.0: взаимодействие и факторы влияния // Креативная экономика. 2023. Т. 17. № 3. С. 935 – 954.
  14. Andreev G. Integration of UGC into traditional digital media and its impact on media platform business metrics: from retention rate to user LTV assessment // Cold Science. 2025. № 19. P. 4 – 15.
  15. Валеев А.С., Кузнецова Е.В. Влияние искусственного интеллекта на бизнес-процессы: возможности и риски // Экономика и бизнес: теория и практика. 2025. № 4 (122). С. 76 – 81.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).