Economic prospects of using artificial intelligence and neural network algorithms in research of generation Z biotechnologists
- Authors: Ekshikeev T.K1, Shepelin G.S1, Vorobyev M.A1, Obukhova I.A2
-
Affiliations:
- St. Petersburg State Chemical and Pharmaceutical University
- St. Petersburg State Forest Engineering University
- Issue: Vol 4, No 3 (2025)
- Pages: 88-96
- Section: Articles
- URL: https://journals.rcsi.science/2949-4648/article/view/378824
- ID: 378824
Cite item
Abstract
About the authors
T. K Ekshikeev
St. Petersburg State Chemical and Pharmaceutical University
Email: tager.ekshikeev@pharminnotech.com
ORCID iD: 0000-0002-9179-7398
G. S Shepelin
St. Petersburg State Chemical and Pharmaceutical University
Email: Gleb.SHepelin@spcpu.ru
ORCID iD: 0009-0002-5527-1062
M. A Vorobyev
St. Petersburg State Chemical and Pharmaceutical University
Email: Maksim.Vorobev@spcpu.ru
ORCID iD: 0009-0000-8277-5309
I. A Obukhova
St. Petersburg State Forest Engineering University
Email: iobukhova@inbox.ru
ORCID iD: 0000-0002-1472-1867
References
- Duan F., Duan C., Xu H., Zhao X., Sukhbaatar O., Gao J., Zhang M., Zhang W., Gu Y. AI-driven drug discovery from natural products // Advanced Agrochem. 2024. Vol. 3. No. 3. P. 185 – 187.
- Казакова Е.В., Трухин В.П., Наркевич И.А., Басакина И.И. Разработка адаптивной организационной структуры управления на примере экспортно ориентированного биотехнологического предприятия // Современная фармация: вызовы, ожидания, решения. Пермь: Федеральное государственное бюджетное образовательное учреждение высшего образования «Пермская государственная фармацевтическая академия» Министерства здравоохранения Российской Федерации, 2023. С. 114 – 118.
- Казакова Е.В., Трухин В.П., Наркевич И.А. и др. Методические подходы к оценке готовности персонала к инновационным процессам на примере экспортно-ориентированного биотехнологического предприятия //Медицинский вестник Башкортостана. 2023. Т. 18. № 5 (107). С. 53 – 59.
- DeCamp M, Tilburt JC. Why we cannot trust artificial intelligence in medicine // Lancet Digit Health. 2019. Vol. 1, No. 8. P. E390.
- Wallace P.J. Gaining Trust: Lessons and Opportunities for Artificial Intelligence in Health Care // The Permanente Journal. 2024. Vol. 28. No. 3. Р. 168 – 171.
- Shevtsova D., Ahmed A., Boot I.W.A, Sanges C., Hudecek M., Jacobs J.J.L., Hort S., Vrijhoef H.J.M. Trust in and Acceptance of Artificial Intelligence Applications in Medicine: Mixed Methods Study // JMIR Human Factors. 2024. Vol. 11. Р. e47031.
- Kerasidou C.X., Kerasidou A., Buscher M., Wilkinson S. Before and beyond trust: reliance in medical AI // Journal of Medical Ethics. 2022. Vol. 48, No. 11. Р. 852 – 856.
- Zhang J., Zhang Zm. Ethics and governance of trustworthy medical artificial intelligence // BMC Medical Informatics and Decision Making. 2023. Vol. 23. No. 7. Р. 1 – 15.
- Flores L., Kim S., Young S.D. Addressing bias in artificial intelligence for public health surveillance // Journal of Medical Ethics. 2024. Vol. 50, No. 3. Р. 190 – 194.
- Starke G., De Clercq E., Elger B.S. Towards a pragmatist dealing with algorithmic bias in medical machine learning // Medicine, Health Care and Philosophy. 2021. Vol. 24. Р. 341 – 349.
- Strack R. Protein-ligand structure prediction // Nature Methods. 2024. Vol. 21. No. 549. Р. 1 – 13.
- Bian Y., Xie X.Q. Generative chemistry: drug discovery with deep learning generative models // Journal of Molecular Modeling. 2021. Vol. 27. No. 71. Р. 1 – 32.
- Fihn S.D., Jacobs E.A., Kim H.S., Perencevich E.N. JAMA Network Open-The Year in Review, 2024 // JAMA Network Open. 2025. Vol. 8. No. 3. Р.e257199.
- Zeng C., Schlueter D.J., Tran T.C., Babbar A., Cassini T., Bastarache L.A., Denny J.C. Comparison of phenomic profiles in the All of Us Research Program against the US general population and the UK Biobank // Journal of the American Medical Informatics Association. 2024. Vol. 31. No. 4. Р. 846 – 854.
- Blanchard A.E., Stanley C., Bhowmik D. Using GANs with adaptive training data to search for new molecules // Journal Cheminformatics. 2021. Vol. 13, No. 14. Р. 1 – 8.
- Hatz S., Spangler S., Bender A., Studham M., Haselmayer P., Lacoste A.M.B., et al. Identification of pharmacodynamic biomarker hypotheses through literature analysis with IBM Watson // PLoS ONE. 2019. Vol. 14. No. 4. Р. e0214619.
Supplementary files
