The middle–late Holocene climatic fluctuations recorded in sedimentary sequence of Lake Geographensee, Fildes Peninsula (King George Island, West Antarctica)
- Authors: Verkulich S.R.1,2, Kublitsky Y.A.1, Leontyev P.A.1, Pushina Z.V.2, Shatalova A.E.1, Kulkova M.A.1, Tyurina A.A.1, Evangelista H.3, Subetto D.A.1
-
Affiliations:
- Herzen State Pedagogical University of Russia
- Arctic and Antarctic Research Institute
- Rio de Janeiro State University
- Issue: Vol 55, No 3 (2024)
- Pages: 146-163
- Section: Late Glacial and Holocene Palaeogeography
- URL: https://journals.rcsi.science/2949-1789/article/view/276392
- DOI: https://doi.org/10.31857/S2949178924030082
- EDN: https://elibrary.ru/PLFHFC
- ID: 276392
Cite item
Abstract
The article focuses on the paleoclimatic reconstruction of Holocene environmental changes. To address this issue, a study of the bottom sediments of Lake Geographensee, located on the Fildes Peninsula, King George Island, West Antarctica, was conducted. The lake, located above the maximum Holocene marine transgression limit, preserves an undisturbed sediment record spanning the last 8500 cal. yr BP. The results of lithological, loss-on-ignition, grain size, diatom, and geochemical analyses, along with statistical data processing and radiocarbon chronology of the bottom sediments, are presented. The study allows to identify significant and minor stages of climate change. A prominent warming occurred between ca. 4800–3400 cal. yr BP. Minor warming intervals were identified at ca. 8500–8000 cal. yr BP, ca. 5600–5300 cal. yr BP, ca. 5130–4800 cal. yr BP, ca. 3400–2400 cal. yr BP, and ca. 1200–800 cal. yr BP. A notable cooling stage transpired at ca. 7500–5600 cal. yr BP, with a peak cold period around 7300–7000 cal. yr BP, and possibly at ca. 1800–1200 cal. yr BP. Minor relative cooling phases took place during next periods: ca. 8000–7500 cal. yr BP, ca. 5300–5130 cal. yr BP, and ca. 2400–1800 cal. yr BP. Additionally, short-term relative cooling and warming are suggested to have occurred during the period ca. 800–600 cal. yr BP. Taking into account the absence of suitable glaciers for obtaining the ice core for paleoclimatic records in the considered maritime Antarctic region, this paleolimnological study provides a foundation for broader understanding of the Holocene climate change in the West Antarctica.
Full Text

About the authors
S. R. Verkulich
Herzen State Pedagogical University of Russia; Arctic and Antarctic Research Institute
Author for correspondence.
Email: verkulich@mail.ru
Russian Federation, Saint Petersburg; Saint Petersburg
Yu. A. Kublitsky
Herzen State Pedagogical University of Russia
Email: verkulich@mail.ru
Russian Federation, Saint Petersburg
P. A. Leontyev
Herzen State Pedagogical University of Russia
Email: verkulich@mail.ru
Russian Federation, Saint Petersburg
Z. V. Pushina
Arctic and Antarctic Research Institute
Email: verkulich@mail.ru
Russian Federation, Saint Petersburg
A. E. Shatalova
Herzen State Pedagogical University of Russia
Email: verkulich@mail.ru
Russian Federation, Saint Petersburg
M. A. Kulkova
Herzen State Pedagogical University of Russia
Email: verkulich@mail.ru
Russian Federation, Saint Petersburg
A. A. Tyurina
Herzen State Pedagogical University of Russia
Email: verkulich@mail.ru
Russian Federation, Saint Petersburg
H. Evangelista
Rio de Janeiro State University
Email: verkulich@mail.ru
Brazil, Rio de Janeiro
D. A. Subetto
Herzen State Pedagogical University of Russia
Email: verkulich@mail.ru
Russian Federation, Saint Petersburg
References
- Alyokin O.A. (1970). Osnovy gidrokhimii (Basics of hydrochemistry). Leningrad: Hydrometeoizdat (Publ.). 443 p. (in Russ.)
- Barion P.H., Roberts S.J., Spiegel C. et al. (2023). Holocene glacier readvances on the Fildes Peninsula, King George Island (Isla 25 de Mayo), NW Antarctic Peninsula. The Holocene. (submitted).
- Bentley M.J. (1999). Volume of Antarctic ice at the Last Glacial Maximum, and its impact on global sea level change. Quat. Sci. Rev. V. 18. Iss. 14. P. 1569–1595. https://doi.org/10.1016/S0277-3791(98)00118-8
- Björck S., Håkansson H., Zale R. et al. (1991). A Late Holocene Lake sediment sequence from Livingston Island, South Shetland Islands, with paleoclimatic implications. Antarctic Sci. V. 3. Iss. 1. P. 61–72. https://doi.org/10.1017/S095410209100010X
- Bromwich D.H., Nicolas J.P., Monaghan A.J. et al. (2012). Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. V. 6 (2). P. 139–145. https://doi.org/10.1038/ngeo1671
- Croudace I.W., Rothwell R.G. (Eds.). (2015). Micro-XRF Studies of Sediment Cores. Springer. 656 p. https://doi.org/10.1007/978-94-017-9849-5
- Dean W.E. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sediment. Res. № 44. P. 242–248. https://doi.org/10.1306/74d729d2-2b21-11d7- 8648000102c1865d
- Hodgson. D.A., Abram N., Anderson J. et al. (2009). Antarctic climate and environment history in the pre-instrumental period. Turner J., Convey P., Di Prisco G. et al. (Eds.). In: Antarctic Climate Change and the Environment, Scientific Committee for Antarctic Research, Cambridge. P. 115–182.
- Hodgson D.A., Doran P.T., Roberts D. et al. (2004). Paleolimnological studies from the Antarctic and Subantarctic islands. Pienitz R., Douglas M.S.V., Smol J.P. (Eds.). In: Long-term environmental change in Arctic and Antarctic lakes. Springer. The Netherlands. P. 419–474. https://doi.org/10.1007/978-1-4020-2126-8_14
- Howat I., Porter C., Noh M-J. et al. (2022). The Reference Elevation Model of Antarctica – Mosaics, Version 2. Harvard Dataverse. V1. https://doi.org/10.7910/DVN/EBW8UC
- Jousé A.P., Muchina V.V., Kozlova O.G. (1969). Diatoms and silicoflagellates in the surface sediments of the Pacific Ocean. In: Tikhii okean. Mikroflora i mikrofauna v sovremennykh osadkakh Tikhogo okeana. Moscow: Nauka (Publ.). P. 7–47. (in Russ.)
- Juggins S. (2007). C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualization. Department of Geography, University of Newcastle, Newcastle upon Tyne.
- Kopalová K., Van de Vijver B. (2013). Structure and ecology of freshwater benthic diatom communities from Byers Peninsula, Livingston Island, South Shetland Islands. Antarctic Science. V. 25. Iss. 2. P. 239–253. https://doi.org/10.1017/S0954102012000764
- Lüning S., Galka M., Vahrenholt F. (2019). The Medieval Climate Anomaly in Antarctica. Palaeogeogr., Palaeoclimatol., Palaeoecol. V. 532. P. 109251. https://doi.org/10.1016/j.palaeo.2019.109251.
- Martinez-Macchiavello J.C., Tatur A., Servant-Vildary S. et al. (2004). Holocene environmental change in a marine-estuarine-lacustrine sediment sequence, King George Island, South Shetland Islands. Antarctic Science. V. 8. Iss. 4. P. 313–322. https://doi.org/10.1017/S095410209600048X
- Matthies D., Mäusbacher R., Storzer D. (1990). Deseption Island tephra: a stratigraphical marker for limnic and marine sediments in Bransfield Strait area, Antarctica. Zeitshrift fur Geologie und Palaontologie. V. 1. P. 153–165.
- Mäusbacher R., Muller J., Schmidt R. (1989). Evolution of postglacial sedimentation in Antarctic lakes (King Georg Island). Zeitschrift ffi Geomorphologie N.F. V. 33. Iss. 2. P. 219–234.
- Mavlyudov B.R. (2022). Summer mass balance of the Bellingshausen Dome on King George Island, Antarctica. Ice and Snow. V. 62. № 3. P. 325–342. (in Russ.). https://doi.org/10.31857/S2076673422030135
- Microsoft Bing – Maps [Electronic data]. Access way: https://www.bing.com/maps/ (access date: 25.01.2024).
- Minyuk P.S., Borkhodoev V.Y., Wennrich V. (2014). Inorganic geochemistry data from Lake El’gygytgyn sediments: Marine isotope stages 6–11. Clim. Past. V. 10. № 2. P. 467–485. https://doi.org/10.5194/cp-10-467-2014
- Polishchuk K.V., Verkulich S.R., Ezhikov I.S. et al. (2016). Postglacial relative sea level changes at Fildes Peninsula, King George Island (West Antarctic). Ice and Snow. V. 56. № 1. P. 93– 102. (in Russ.). https://doi.org/10.15356/2076-6734-2016-1-93-102
- Priddle J., Heywood R.B. (1980). Evolution of Antarctic lake ecosystems. Bonner W.N., Berry R.J. (Eds.). In: Ecology in the Antarctic. Academic Press, London. P. 51–66.
- Reimer P.J., Austin W.E.N., Bard E. et al. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal. kBP). Radiocarbon. V. 62. № 4. P. 725–757. https://doi.org/10.1017/RDC.2020.41
- Ramsey C.B., Lee S. (2013). Recent and planned developments of the program OxCal. Radiocarbon. V. 55. № 2. P. 720–730. https://doi.org/10.1017/S0033822200057878
- Roberts S.J., Monien P., Foster L.C. et al. (2017). Past penguin colony responses to explosive volcanism on the Antarctic Peninsula. Nat. Commun. № 8. Article number: 14914. https://doi.org/10.1038/ncomms14914
- Rückamp M., Braun M., Suckro S. (2011). Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global and Planetary Change. № 79. P. 99–109. https://doi.org/10.1016/j.gloplacha.2011.06.009
- Schmidt R., Mäusbacher R., Müller J. (1990). Holocene diatom flora and stratigraphy from sediment cores of two Antarctic lakes (King George Island). J. Paleolimnol. № 3. P. 55–74.
- Shevnina E., Kourzeneva E. (2017). Thermal regime and components of water balance of lakes in Antarctica at the Fildes peninsula and the Larsemann Hills. Tellus A. V. 69. P. 1317202. https://doi.org/10.1080/16000870.2017.1317202
- Simonov I.M. (1975). Physiographic characteristics of the Fildes Peninsula. In: Antarktika: Doklady komissii (Antarctic: Reports to Commission). № 14. P. 128–135. (in Russ.)
- Skorospekhova T.V., Fedorova I.V., Chetverova A.A. et al. (2016). Characteristic of hydrological regime on Fildes Peninsula (King George Island, West Antarctica). Problemy Arktiki i Antarktiki. № 2. P. 79–91. (in Russ.)
- Steig E.J., Schneider D.P., Rutherford S.D. et al. (2009). Warming of the Antarctic Ice-Sheet surface since the 1957 International Geophysical Year. Nature. № 457. P. 459–462. https://doi.org/10.1038/nature07669
- Sterken M., Verleyen E., Jones V.J. et al. (2015). An illustrated and annotated checklist of freshwater diatoms (Bacillariophyta) from Livingston, Signy and Beak Island (Maritime Antarctic Region). Plant Ecology and Evolution. № 148 (3). P. 431–455. https://doi.org/10.5091/plecevo.2015.1103
- Subetto D.A. (2009). Lake bottom sediments: paleolimnological reconstructions. Saint-Petersburg: RGPU (Publ.). 343 p. (in Russ.)
- Tatur A., Del Valle R., Barczuk A. et al. (2004). Records of Holocene environmental changes in terrestrial sedimentary deposits on King George Island, Antarctica: a critical review. Ocean Polar Res. V. 26. Iss. 3. P. 531–537. https://doi.org/10.4217/OPR.2004.26.3.531
- Vaasma T. (2008). Grain-size analysis of lacustrine sediments: a comparison of pre-treatment methods. Estonian J. of Ecology. V. 57. Iss. 4. P. 231–243. https://doi.org/10.3176/eco.2008.4.01
- Van de Vijver B., Frenot Y., Beyens L. (2002). Freshwater Diatoms from Ile de la Possession (Crozet Archipelago, Subantarctica). Bibliotheca Diatomologica. № 46. 412 p.
- Van de Vijver B., Sterken M., Vyverman W. et al. (2010). Four new non-marine diatom taxa from the subantarctic and Antarctic regions. Diatom Research. V. 25. Iss. 2. P. 431–443.
- Vaughan D.G., Marshall G.J., Connolley et al. (2003). Recent rapid regional climate warming on the Antarctic Peninsula. Clim. Change. V. 60. P. 243–274. https://doi.org/10.1023/A:1026021217991
- Verkulich S.R. (2022). Climate, sea level and glaciation changes in the marginal zone of Antarctica during the last 50000 years. Kriosfera Zemli. V. 26. № 2. P. 3– 24. (in Russ.). https://doi.org/10.15372/KZ20220201
- Verkulich S.R., Pushina Z.V., Tatur A. et al. (2012). Holocene environmental changes in the Fildes Peninsula, King George Island (West Antarctica). Problemy Arktiki i Antarktiki. № 3 (93). P. 17–27. (in Russ.)
- Watcham E.P., Bentley M.J., Hodgson D.A. et al. (2011). A new Holocene relative sea level curve for the South Shetland Islands, Antarctica. Quat. Sci. Rev. V. 30. Iss. 21–22. P. 3152–3170. https://doi.org/10.1016/j.quascirev.2011.07.021
Supplementary files
