Scattering due to edge imperfections in topological insulators in the uniform magnetic field

Cover Page

Cite item

Full Text

Abstract

We study the scattering of edge excitations of 2D topological insulator (TI) in the uniform external magnetic field due to edge imperfections, ubiquitous in realistic 2D TIs. Our previous study shows the possible existence of oscillations of reflection amplitude in a weak magnetic field. In this paper, we address yet another general class of edge deformation profiles and also discover quantum oscillations of the scattering coefficient in one more general situation of low momentum carriers. The semiclassical Pokrovsky-Khalatnikov approach is used to obtain reflection coefficient with pre-exponential accuracy.

Full Text

1. Introduction

Topological insulators (TIs) are novel materials that cannot be continuously converted into semiconductors or conventional insulators. They are distinguished by gapless edge or surface states and a complete insulating gap in the bulk. Time reversal (TR) symmetry protects the edge (in 2D TIs) or surface (in 3D TIs) states from elastic scattering. Error-tolerant quantum computing[1, 2] and low-power circuits [3] are two potential uses for TI.

The features of TIs have piqued the interest of the scientific community due to experimental observations of surface states[4] in Bi2Se3 crystals and transport by edge states in HgTe quantum wells (QW)[5]. The edge states are either 2D states on the boundaries of 3D TI (as in the case of Bi2Se3 [6]) or 1D states on the boundaries of 2D TI (e.g., HgTe quamtum well). With the exception of HgTe [7], 2D and 3D TI samples are typically comprised of distinct compounds. Other realizations of 1D topologically protected states are found on step edges[8, 9] and on the edges between 3D TI surfaces[10].

The most striking feature of edge states in 2D TI is that, as a result of spin-momentum locking, the scattering event MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugGbabaaaaaaaaapeGaa8hfGaaa@3A95@ which, in the case of a 2D TI edge, is always a back-scattering inevitably involves the quasiparticle’s spin flipping. Consequently, the elastic scattering of the edge states is prohibited in the absence of magnetic impurities or other TR - violating contributions. This is the well-known manifestation of TR - symmetry in these kinds of systems [11]. Another important peculiarity of TI compounds is the pronounced spin-orbit interaction (SOI), [12, 13].

In paper [14], we introduced a model edge Hamiltonian describing the influence of SOI on edge imperfections. The edge imperfection is controlled by the deformation angle profile (see Fig. 1(a)). The elastic scattering becomes possible in the presence of the uniform magnetic field orthogonal to the edge. This model predicts an interesting effect. At not very strong magnetic fields the reflection coefficient exhibits pronounced oscillations as a function of magnetic field. In this paper we expand our study and discover new type of quantum oscillations of the reflection coefficient for another general type of potentials at Zeeman energies close to the energy of quasiparticles. We also extend the previous study on the deformation potential of yet another analytical structure. As usual, for the smooth deformation profiles the poweful Pokrovsky-Khalatnikov method [15] is used to obtain the analytic reflection amplitude with pre-exponential accuracy.

 

Рис. 1: A schematic illustration of a geometric imperfection on the edge of a 2D topological insulator sample

 

The paper is organized as follows. Section 1 is dedicated to the initial model and main approximations of the problem. Section 2 introduces the principle points of semiclassical Pokrovsky-Khalatnikov procedure. Section 3 deals with its application to the an important class of scattering potentials for slow moving edge excitations. Section 4 generalizes the previous treatment of the same problem to the wider class of potentials. Section 5 discusses the exact solution of the magnetic-field-free problem and presents the perturbation (in magnetic field) theory, as well as the matching of perturbative and semiclassical limit. We summarize the results in Section 6.

1 The model

The Hamiltonian of a 2D TI for the edge excitations has the following form [16]:

H^=H0+Hso,H0=vF0p^xσ^y,Hso=ασ×pν. (1)

Here, 𝐻0 is the effective Hamiltonian of edge states moving along x-axis (y=0) and σ =( σ x , σ y , σ z ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafq4WdmNbaS aacaaI9aGaaGikaiabeo8aZnaaBaaaleaacaWG4baabeaakiaaiYca cqaHdpWCdaWgaaWcbaGaamyEaaqabaGccaaISaGaeq4Wdm3aaSbaaS qaaiaadQhaaeqaaOGaaGykaaaa@4659@  are Pauli matrices in the spin 1/2 basis and 𝑣𝐹0 is a bare Fermi velocity.

The spin-orbital interaction Hamiltonian 𝐻𝑠𝑜 is derived in paper [17] where a 2D electron gas was addressed; p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmiCayaala aaaa@390E@  is electron’s momentum, 𝜈 is a unit normal to the surface of the TI (or to an interface in a heterostructure), and 𝛼 is Rashba parameter. The latter depends on the external electric field (the gate voltage)[12, 13] as well as the material. The former causes the splitting in energy bands due to electron’s spin (Rashba splitting), which is pronounced in energy band structure of TI materials [13, 18].

It is crucial to note here how the normal vector’s 𝜈 direction should be fixed. Essentially, the right direction may be inferred from the original TI Hamiltonian, which we won’t show here. Nevertheless, we rely on article [18], which demonstrates that a TI’s Fermi velocity increases as Rashba’s coefficient 𝛼 decreases. The orientation shown in Fig. 1(a) corresponds to the correct direction of 𝜈, as we will see below.

Let us consider a deformation at the edge, as depicted in Fig. 1(a). The tangent profile of the sample edge is bent in 𝑦𝑧 plane and determined by the function 𝜑(𝑥). This deformation leads to a transformed spin-orbit interaction

Hso=αp^xσ^y+U^x,U^x=α2[p^xϕ(x)+ϕ(x)p^x]σz (2)

for smooth and shallow defects ( ϕ(x)1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqy1dyMaaG ikaiaadIhacaaIPaqeeuuDJXwAKbsr4rNCHbacfaGae8NAI0JaaGym aaaa@42D6@  ). To preserve the hermicity of the initial SOI Hamiltonian (1) we introduced the anti commutator (due to the 𝑥 -coordinate dependence of the normal vector 𝜈). The first term in (2), α p ^ x σ ^ y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaeq ySdeMabmiCayaajaWaaSbaaSqaaiaadIhaaeqaaOGafq4WdmNbaKaa daWgaaWcbaGaamyEaaqabaaaaa@3FC8@  is a simple renormalization of the Fermi velocity, as we see from the initial Hamiltonian (1). The latter term in (2) is supposed to be treated as an elastic potential profile of the problem. In what follows, it would be convenient to incorporate the parameter 𝛼 in the profile deformation function: φ=αϕ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ypaiabeg7aHjabew9aMbaa@3DF2@ .

The potential profile function U ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaaja aaaa@38F1@  in (2) alone will not cause backscattering of the edge states, since U ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaaja aaaa@38F1@  does not break TR - symmetry. However, that is not the case in the presence of the uniform magnetic field, since the latter does break the TR - symmetry. Therefore, we apply magnetic field in the vertical direction (𝑧 -axis) (i.e. orthogonal to the plane of the TI sample). The suitable gauge of vector-potential is as follows: A =(Hy,0,0) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyqayaala GaaGypaiaaiIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbaiab=TqiijaadMhacaaISaGaaGimaiaaiYcacaaIWaGaaGykaa aa@496C@ . We note here, that 𝑦 - coordinate remains constant in our case y=const MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaai2 dacaqGJbGaam4Baiaad6gacaWGZbGaamiDaaaa@3E8A@  /. Therefore, it can be safely put equal to zero (alternatively, for constant 𝑦 the vector potential can be removed from Dirac’s equation via elementary gauge transformation). Thus, the only change of the Hamiltonian brought by the magnetic field is the addition of a Zeeman term:

H ^ 1D (x)= v F p ^ x σ y +μ σ z + U ^ (x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaaja WaaWbaaSqabeaacaaIXaGaamiraaaakiaaiIcacaWG4bGaaGykaiaa i2dacaWG2bWaaSbaaSqaaiaadAeaaeqaaOGabmiCayaajaWaaSbaaS qaaiaadIhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadMhaaeqaaOGaey4k aSIaeqiVd0Maeq4Wdm3aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIabm yvayaajaGaaGikaiaadIhacaaIPaGaaGOlaaaa@4F69@  (3)

Here, v F = v F0 α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGgbaabeaakiaai2dacaWG2bWaaSbaaSqaaiaadAeacaaI WaaabeaakiabgkHiTiabeg7aHbaa@400C@  is a renormalized Fermi velocity and μ= μ B gH MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiabeY7aTnaaBaaaleaacaWGcbaabeaakiaadEgatuuDJXwAK1uy 0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=Tqiibaa@48A6@ , 𝑔 is the edge electron’s g-factor [19]. We consider the application of the transverse magnetic field only. As shown in [20], the in-plane magnetic field can be eliminated by a gauge transformation of the electron field operators.

As a result, we end up solving the scattering problem for the following equation:

v F p ^ x σ y +μ σ z + U ^ (x) ψ(x)=εψ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaaca WG2bWaaSbaaSqaaiaadAeaaeqaaOGabmiCayaajaWaaSbaaSqaaiaa dIhaaeqaaOGaeq4Wdm3aaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaeq iVd0Maeq4Wdm3aaSbaaSqaaiaadQhaaeqaaOGaey4kaSIabmyvayaa jaGaaGikaiaadIhacaaIPaaacaGLBbGaayzxaaGaeqiYdKNaaGikai aadIhacaaIPaGaaGypaiabew7aLjabeI8a5jaaiIcacaWG4bGaaGyk aaaa@55B0@  (4)

As one readily sees, even in the absence of deformation potential U ^ (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaaja GaaGikaiaadIhacaaIPaaaaa@3B53@  the Zeeman term μ σ z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maeq 4Wdm3aaSbaaSqaaiaadQhaaeqaaaaa@3CAB@  leads to a gap in the spectrum of edge state of the width μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@39BD@ . Therefore, the unbound states always obey the condition:

ε>μ. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG OpaiabeY7aTjaai6caaaa@3CE4@  (5)

2 Methods

The Dirac equation (4) comprises two first order differential equations on the pair 𝜓 = (𝜓1, 𝜓2). The most convenient approach to its analysis surprisingly happens to be the reduction of system (4) to a 2nd order differential equation on a single function 𝜓1:

2 2 φ 2 +1 α ψ 1 +2i 2 φ 2 +1 φ +φα 2μ3i φ ψ 1 + 1 2 αβ(α2i φ ' )+4ε 2 φ φ ψ 1 =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabl+ qiOnaaCaaaleqabaGaaGOmaaaakiaaygW7daqadaqaaiabeA8aQnaa CaaaleqabaGaaGOmaaaakiaaygW7cqGHRaWkcaaMb8UaaGymaaGaay jkaiaawMcaaiaaygW7cqaHXoqycqaHipqEdaWgaaWcbaGabGymayaa fyaafaaabeaakiaaygW7caaMb8Uaey4kaSIaaGzaVlaaikdacaWGPb GaeS4dHGMaaGzaVpaadmaabaGaeS4dHG2aaWbaaSqabeaacaaIYaaa aOGaaGzaVpaabmaabaGaeqOXdO2aaWbaaSqabeaacaaIYaaaaOGaaG zaVlabgUcaRiaaygW7caaIXaaacaGLOaGaayzkaaGafqOXdOMbauGb auaacaaMb8Uaey4kaSIaaGzaVlabeA8aQjabeg7aHnaabmaabaGaaG OmaiabeY7aTjaaygW7cqGHsislcaaMb8UaaG4maiaadMgacqWIpecA cuaHgpGAgaqbaaGaayjkaiaawMcaaaGaay5waiaaw2faaiaaygW7cq aHipqEdaWgaaWcbaGabGymayaafaaabeaakiabgUcaRmaadmaabaWa aSaaaeaacaaIXaaabaGaaGOmaaaacqaHXoqycqaHYoGycaaIOaGaeq ySdeMaeyOeI0IaaGOmaiaadMgacqWIpecAcqaHgpGAdaahaaWcbeqa aiaadEcaaaGccaaIPaGaey4kaSIaaGinaiabew7aLjabl+qiOnaaCa aaleqabaGaaGOmaaaakiabeA8aQjqbeA8aQzaafyaafaaacaGLBbGa ayzxaaGaeqiYdK3aaSbaaSqaaiaaigdaaeqaaOGaaGypaiaaicdaca aISaaaaa@9CAE@  (6)

ψ 2 = 2 φ 2 +1 ψ 1 i ψ 1 φβ(x) α(x) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaaikdaaeqaaOGaaGypamaalaaabaGaaGOmaiabl+qiOnaa bmaabaGaeqOXdO2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaa GaayjkaiaawMcaaiabeI8a5naaBaaaleaaceaIXaGbauaaaeqaaOGa eyOeI0IaamyAaiabeI8a5naaBaaaleaacaaIXaaabeaakiabeA8aQj abek7aIjaaiIcacaWG4bGaaGykaaqaaiabeg7aHjaaiIcacaWG4bGa aGykaaaacaaIUaaaaa@5537@  (7)

Here α(x)=2(μ+ε)i φ ,β(x)=2(με)+i φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ikaiaadIhacaaIPaGaaGypaiaaikdacaaIOaGaeqiVd0Maey4kaSIa eqyTduMaaGykaiabgkHiTiaadMgacqWIpecAcuaHgpGAgaqbaiaaiY cacaaMe8UaeqOSdiMaaGikaiaadIhacaaIPaGaaGypaiaaikdacaaI OaGaeqiVd0MaeyOeI0IaeqyTduMaaGykaiabgUcaRiaadMgacqWIpe cAcuaHgpGAgaqbaaaa@5A36@ .

The derivation of (6) is straightforward and presented in [14]. Due to its complexity, differential equation (6) cannot be solved exactly. We are going to approach it from two different limits:

(i) semiclassical approximation, corresponding to the smooth deformation 𝜙(𝑥) of the edge;

(ii) perturbation theory in magnetic field strength (Zeeman energy) 𝜇. For the wide class of potentials we are going to show how these two approaches match.

2.1 Semiclassical approximation

First, we need to determine the small parameter of the problem. Physically speaking, semiclassical treatment corresponds to the case of smooth (on the scale of de Broglie wavelength) deformation potential φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf ginfgDObacfiqcLbuaqaaaaaaaaaWdbiaa=z8aaaa@3C8F@  (𝑥). The characteristic scale at which the potential changes is denoted as 𝑎0. The smoothness of the potential then means:

λ a 0 v F ε a 0 1(semiclassicalapproximation) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaacq aH7oaBaeaacaWGHbWaaSbaaSqaaiaaicdaaeqaaaaakiabggMi6oaa laaabaGaeS4dHGMaamODamaaBaaaleaacaWGgbaabeaaaOqaaiabew 7aLjaadggadaWgaaWcbaGaaGimaaqabaaaaebbfv3ySLgzGueE0jxy aGqbaOGae8NAI0JaaGymaiaaywW7caaIOaGaam4CaiaadwgacaWGTb GaamyAaiaadogacaWGSbGaamyyaiaadohacaWGZbGaamyAaiaadoga caWGHbGaamiBaiaaysW7caWGHbGaamiCaiaadchacaWGYbGaam4Bai aadIhacaWGPbGaamyBaiaadggacaWG0bGaamyAaiaad+gacaWGUbGa aGykaaaa@67AB@  (8)

The semiclassical scattering in the problem is structured in a way that, as we will see in the study that follows, the semiclassical momentum never vanishes on the real axis in view of condition (5), rendering the scattering an over-barrier event. Therefore, Pokrovsky-Khalatnikov [15] (P-Kh) method seems to be the most adequate approach to the task. For convenience, we use = v F =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4dHGMaaG ypaiaadAhadaWgaaWcbaGaamOraaqabaGccaaI9aGaaGymaaaa@3D75@  units system throughout the rest of the paper, restoring them when needed.

2.2 Pokrovsky-Khalatnikov approach

The concept of the method can be condensed to the following key steps (see also the work by M. Berry [21]):

(i) Perform the analytical continuation of the semiclassical solution into the complex plane along a so called anti-Stokes line, Im z 0 z k(z)dz=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeysaiaad2 gadaWdXaqabSqaaiaadQhadaWgaaqaaiaaicdaaeqaaaqaaiaadQha a0Gaey4kIipakiaadUgacaaIOaGaamOEaiaaiMcacaaMi8Uaamizai aadQhacaaI9aGaaGimaaaa@4720@  where 𝑘(𝑧) is the semiclassical momentum and z 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIWaaabeaaaaa@39EC@  is the so called turning point in the complex plane.

(ii) Construct the exact solution of the Schrödinger equation around the turning point 𝑧0, when the differential equation substantially simplifies due to the Taylor-expansion of momentum 𝑘(𝑧).

(iii) Determine the exact solution’s asymptotics on the anti-Stokes lines that extend from the turning point to the left and right.

(iv) Presuming that there is a non-empty intersection of the range of existance of the asymptotics of exact and semiclassical solutions (the striped region in Fig. 1(b)) match the semiclassical and exact solutions in the mentioned range on anti-Stokes lines.

(v) Build an analytic continuation from the anti-Stokes line running to −∞ on the real axis 𝜓(𝑧) → 𝜓(𝑥).

We are going to implement the outlined program step by step explaining all the nuances in the rest of the paper.

2.3 Semiclassical solution

Let us make the exponential substitute ψ e iS/ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG jbVlabgkziUkaadwgadaahaaWcbeqaaiaadMgacaWGtbGaaG4laiab l+qiObaaaaa@420E@ for the wave function and employ the standard semiclassical expansion in the powers of ℏ adapted to the equation (6):

ψ= ψ 1 ψ 2 , ψ 1,2 =exp i S 0 +i S 1,2 +... . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ypamaabmaabaqbaeqabiqaaaqaaiabeI8a5naaBaaaleaacaaIXaaa beaaaOqaaiabeI8a5naaBaaaleaacaaIYaaabeaaaaaakiaawIcaca GLPaaacaaISaGaaGzbVlabeI8a5naaBaaaleaacaaIXaGaaGilaiaa ikdaaeqaaOGaaGypaiGacwgacaGG4bGaaiiCamaabmaabaWaaSaaae aacaWGPbGaam4uamaaBaaaleaacaaIWaaabeaaaOqaaiabl+qiObaa cqGHRaWkcaWGPbGaam4uamaaBaaaleaacaaIXaGaaGilaiaaikdaae qaaOGaey4kaSIaaGOlaiaai6cacaaIUaaacaGLOaGaayzkaaGaaGOl aaaa@5A0D@  (9)

In the zeroth order in ℏ (i.e. discarding all terms with derivatives of φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf ginfgDObacfiqcLbuaqaaaaaaaaaWdbiaa=z8aaaa@3C8F@  in Eq. 6) we obtain the following expression for 𝑆0 [14]:

S 0 (x)= q ± ( x )d x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaaBa aaleaacaaIWaaabeaakiaaiIcacaWG4bGaaGykaiaai2dadaWdbaqa bSqabeqaniabgUIiYdGccaWGXbWaaSbaaSqaaiabgglaXcqabaGcca aIOaGabmiEayaafaGaaGykaiaayIW7caWGKbGabmiEayaafaGaaGil aaaa@48BF@  (10)

q ± = μφ±p φ 2 +1 ,p= ε 2 ( φ 2 +1) μ 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacqGHXcqSaeqaaOGaaGypamaalaaabaGaeyOeI0IaeqiVd0Ma eqOXdOMaeyySaeRaamiCaaqaaiabeA8aQnaaCaaaleqabaGaaGOmaa aakiabgUcaRiaaigdaaaGaaGilaiaaywW7caWGWbGaaGypamaakaaa baGaeqyTdu2aaWbaaSqabeaacaaIYaaaaOGaaGikaiabeA8aQnaaCa aaleqabaGaaGOmaaaakiabgUcaRiaaigdacaaIPaGaeyOeI0IaeqiV d02aaWbaaSqabeaacaaIYaaaaaqabaGccaaISaaaaa@5830@  (11)

where q ± MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacqGHXcqSaeqaaaaa@3B17@  is interpreted as semiclassical momentum. The regular branch of 𝑝 is chosen in such a way that p x+ ε 2 μ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaxa babaGaeyOKH4kaleaacaWG4bGaeyOKH4Qaey4kaSIaeyOhIukabeaa kmaakaaabaGaeqyTdu2aaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iaeq iVd02aaWbaaSqabeaacaaIYaaaaaqabaaaaa@469F@ . Then, retaining the next terms of order ℏ (𝑆1,2 in the substitute (9)), and plugging it back in (6) we obtain the pre-exponential semiclassical terms for the wave function 𝜓:

ψ1,±(x)=ξ1,±(x)eiq±dx   ξ1,±=±q±[1±φεp]ψ2,±(x)=iψ1,±εφpε+μ. (12)

The square roots entering the definition of ξ 1,± MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaS baaSqaaiaaigdacaaISaGaeyySaelabeaaaaa@3D55@  are assumed to be positive at 𝑥 → +∞. To clear out which of the solutions corresponds to the right (left) moving carriers we need semiclassical currents:

j±ψ±σyψ±=2q±p(εμ),j±=x±2(εμ). (13)

In the last equation in (13) we take into account that deformation function φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf ginfgDObacfiqcLbuaqaaaaaaaaaWdbiaa=z8aaaa@3C8F@  (𝑥) → 0 at 𝑥 → ±∞

2.4 Transformation from Dirac to Schrödinger equation.

To make the analogy between Dirac equation Eq. 6 and Schrödinger equation explicit, we get rid of the first derivative in (6) via a standard substitute [22]. Therefore, the equation is transformed according to:

ψ (x)+η(x) ψ (x)+κ(x)ψ(x)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqiYdKNbau GbauaacaaIOaGaamiEaiaaiMcacqGHRaWkcqaH3oaAcaaIOaGaamiE aiaaiMcacuaHipqEgaqbaiaaiIcacaWG4bGaaGykaiabgUcaRiabeQ 7aRjaaiIcacaWG4bGaaGykaiabeI8a5jaaiIcacaWG4bGaaGykaiaa i2dacaaIWaGaeyO0H4naaa@527E@

θ''(x)+π2(x)θ(x)=0 (Schrödinger equation) (14)

θ(x)= e 1 2 η(t)dt ψ(x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaaG ikaiaadIhacaaIPaGaaGypaiaadwgadaahaaWcbeqaamaalaaabaGa aGymaaqaaiaaikdaaaWaa8qaaeqabeqab0Gaey4kIipaliabeE7aOj aaiIcacaWG0bGaaGykaiaadsgacaWG0baaaOGaeqiYdKNaaGikaiaa dIhacaaIPaGaaGilaaaa@4C5C@  (15)

π 2 (x)=κ(x) 1 2 η (x) 1 4 η 2 (x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaW baaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaIPaGaaGypaiabeQ7a RjaaiIcacaWG4bGaaGykaiabgkHiTmaalaaabaGaaGymaaqaaiaaik daaaGafq4TdGMbauaacaaIOaGaamiEaiaaiMcacqGHsisldaWcaaqa aiaaigdaaeaacaaI0aaaaiabeE7aOnaaCaaaleqabaGaaGOmaaaaki aaiIcacaWG4bGaaGykaiaai6caaaa@50B1@  (16)

The expression for 𝜋2(𝑥) is quite cumbersome. Nevertheless, its is important, since it plays the role of the semiclassical momentum in the problem. Therefore, it is instructive to write down 𝜂(𝑥) and 𝜋2(𝑥) discarding all the derivatives of the potential field φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuyTjMCPf ginfgDObacfiqcLbuaqaaaaaaaaaWdbiaa=z8aaaa@3C8F@  (𝑥) (zeroth semiclassical approximation) as well as semiclassical solution. This way the connection with the initial semiclassical relations (10), (11) becomes transparent:

η(x)= 2i μφ(x) φ 2 (x)+1 , π 2 (x)= ε 2 ( φ 2 +1) μ 2 ( φ 2 +1) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdGMaaG ikaiaadIhacaaIPaGaaGypamaalaaabaGaaGOmaiaadMgaaeaacqWI pecAaaWaaSaaaeaacqaH8oqBcqaHgpGAcaaIOaGaamiEaiaaiMcaae aacqaHgpGAdaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiMca cqGHRaWkcaaIXaaaaiaaiYcacaaMe8UaaGjbVlabec8aWnaaCaaale qabaGaaGOmaaaakiaaiIcacaWG4bGaaGykaiaai2dadaWcaaqaaiab ew7aLnaaCaaaleqabaGaaGOmaaaakiaaiIcacqaHgpGAdaahaaWcbe qaaiaaikdaaaGccqGHRaWkcaaIXaGaaGykaiabgkHiTiabeY7aTnaa CaaaleqabaGaaGOmaaaaaOqaaiaaiIcacqaHgpGAdaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIXaGaaGykamaaCaaaleqabaGaaGOmaaaa aaaaaa@6889@  (17)

θ ± (x)= 1 π(x) exp ±i x 0 x π(t)dt . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiabgglaXcqabaGccaaIOaGaamiEaiaaiMcacaaI9aWaaSaa aeaacaaIXaaabaWaaOaaaeaacqaHapaCcaaIOaGaamiEaiaaiMcaaS qabaaaaOGaciyzaiaacIhacaGGWbWaaeWaaeaacqGHXcqScaWGPbWa a8qmaeqaleaacaWG4bWaaSbaaeaacaaIWaaabeaaaeaacaWG4baani abgUIiYdGccqaHapaCcaaIOaGaamiDaiaaiMcacaWGKbGaamiDaaGa ayjkaiaawMcaaiaai6caaaa@5717@  (18)

In the last equation point 𝑥0 needs to be chosen on the real axis. This way both functions θ ± MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUde3aaS baaSqaaiabgglaXcqabaaaaa@3BD7@  have the same modulus. Apart from this 𝑥0 is quite arbitrary and is picked from convenience considerations.

3 The reflection coefficient for the slow edge excitations

Now we would like to address quite a striking case of the over-barrier scattering in TI insulator. Suppose, the energy of the edge excitations is close to the Zeeman gap 𝜇, so that the condition

|εμ|ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiabew 7aLjabgkHiTiabeY7aTjaaiYharqqr1ngBPrgifHhDYfgaiuaacqWF QjspcqaH1oqzaaa@45EE@  (19)

is satisfied. It corresponds to the case of carriers with small momenta v F pμ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGgbaabeaakiaadcharqqr1ngBPrgifHhDYfgaiuaacqWF QjspcqaH8oqBaaa@4298@ . This ought to be a realistic situation at temperatures much lower than Zeeman energy μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@39BD@ . As we are going to see, this situation also leads to a specific analytic structure of the momentum π(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG ikaiaadQhacaaIPaaaaa@3C28@ . Indeed, let us rewrite momentum π(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG ikaiaadQhacaaIPaaaaa@3C28@ , defined in Eq. 17 in a slightly different form:

π(z)= ε φ 2 (z)+ ε 2 μ 2 ε 2 φ 2 (z)+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG ikaiaadQhacaaIPaGaaGypamaalaaabaGaeqyTdu2aaOaaaeaacqaH gpGAdaahaaWcbeqaaiaaikdaaaGccaaIOaGaamOEaiaaiMcacqGHRa WkdaWcaaqaaiabew7aLnaaCaaaleqabaGaaGOmaaaakiabgkHiTiab eY7aTnaaCaaaleqabaGaaGOmaaaaaOqaaiabew7aLnaaCaaaleqaba GaaGOmaaaaaaaabeaaaOqaaiabeA8aQnaaCaaaleqabaGaaGOmaaaa kiaaiIcacaWG6bGaaGykaiabgUcaRiaaigdaaaGaaGOlaaaa@54EF@  (20)

The last formula, in view of condition (19), shows that function π(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG ikaiaadQhacaaIPaaaaa@3C28@  has two coalescent branch points positioned near the complex root of φ( z 0 )=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadQhadaWgaaWcbaGaaGimaaqabaGccaaIPaGaaGypaiaaicda aaa@3E99@ .

The semiclassical condition breaks down near these two coalescent branch points and we can employ step 2 from P-Kh method. We expand the semiclassical momentum near the point z 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIWaaabeaaaaa@39EC@ , as follows:

π 2 ( z 0 +ζ)= ε 2 ζ 2 a 2 +2δεε, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaW baaSqabeaacaaIYaaaaOGaaGikaiaadQhadaWgaaWcbaGaaGimaaqa baGccqGHRaWkcqaH2oGEcaaIPaGaaGypaiabgkHiTiabew7aLnaaCa aaleqabaGaaGOmaaaakmaalaaabaGaeqOTdO3aaWbaaSqabeaacaaI YaaaaaGcbaGaamyyamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkca aIYaGaeqiTdqMaeqyTduMaeqyTduMaaGilaaaa@50D8@  (21)

where ζ=z z 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdONaaG ypaiaadQhacqGHsislcaWG6bWaaSbaaSqaaiaaicdaaeqaaaaa@3E5C@ . Here, parameter a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@38ED@  can be strictly speaking, complex. However, its modulus sets the characteristic scale of change of the potential. Therefore, one may assume that |a| a 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadg gacaaI8bqeeuuDJXwAKbsr4rNCHbacfaGae8hpIOJaamyyamaaBaaa leaacaaIWaaabeaaaaa@427E@ , where a 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIWaaabeaaaaa@39D3@  is the scale of the deformation introduced in Eq. (8). This way, the Dirac equation (6) is turned into parabolic cylinder equation:

ψ 1 '' ε 2 ζ 2 a 2 2δε ε ψ 1 (ζ)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aa0 baaSqaaiaaigdaaeaacaWGNaGaam4jaaaakiabgkHiTiabew7aLnaa CaaaleqabaGaaGOmaaaakmaabmaabaWaaSaaaeaacqaH2oGEdaahaa WcbeqaaiaaikdaaaaakeaacaWGHbWaaWbaaSqabeaacaaIYaaaaaaa kiabgkHiTmaalaaabaGaaGOmaiabes7aKjabew7aLbqaaiabew7aLb aaaiaawIcacaGLPaaacqaHipqEdaWgaaWcbaGaaGymaaqabaGccaaI OaGaeqOTdONaaGykaiaai2dacaaIWaGaaGOlaaaa@548E@  (22)

The anti-Stokes directions are given by the equation

Im 0 ζ π(t)dt = ζ εRe ζ 2 2a =0argζ= π 4 + arga 2 +πn,n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeysaiaad2 gacaaMi8+aa8qmaeqaleaacaaIWaaabaGaeqOTdOhaniabgUIiYdGc cqaHapaCcaaIOaGaamiDaiaaiMcacaaMi8UaamizaiaadshadaWfqa qaaiaai2daaSqaaiabeA7a6jabgkziUkabg6HiLcqabaGccqaH1oqz caqGsbGaamyzaiaayIW7daWcaaqaaiabeA7a6naaCaaaleqabaGaaG OmaaaaaOqaaiaaikdacaWGHbaaaiaai2dacaaIWaGaaGjbVlabgkDi ElaaysW7caqGHbGaamOCaiaadEgacaaMi8UaeqOTdONaaGypamaala aabaGaeqiWdahabaGaaGinaaaacqGHRaWkdaWcaaqaaiaabggacaWG YbGaam4zaiaayIW7caWGHbaabaGaaGOmaaaacqGHRaWkcqaHapaCca WGUbGaaGilaiaaysW7caaMe8UaamOBaiabgIGioprr1ngBPrwtHrhA YaqeguuDJXwAKbstHrhAGq1DVbacfaGae8hjHOLaaGOlaaaa@83B0@  (23)

As a result, we choose the anti-Stokes lines with angles π/4+arga/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaeq iWdaNaaG4laiaaisdacqGHRaWkcaqGHbGaamOCaiaadEgacaaMi8Ua amyyaiaai+cacaaIYaaaaa@43BD@  and 3π/4+arga/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG 4maiabec8aWjaai+cacaaI0aGaey4kaSIaaeyyaiaadkhacaWGNbGa aGjcVlaadggacaaIVaGaaGOmaaaa@447A@ . Substituting (21) into semiclassical expressions (10), (12) we obtain the semiclassical solution in the vicinity of point z 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaaIWaaabeaaaaa@39EC@  

ψ <,+ (s) = 2 2s γ1 γ 2 1 e i s 2 2 iπγ 8 iπ 4 [(γ1)e] γ1 4 , ψ <, (s)= 2 2s γ1 γ 2 e i s 2 2 + iπγ 8 iπ 2 [(γ1)e] γ1 4 ψ >,+ (s) = 2 2s γ1 γ 2 1 e i s 2 2 + iπγ 8 iπ 2 γ1 4 [(γ1)e] γ1 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabeI8a5naaBaaaleaacaaI8aGaaGilaiabgUcaRaqabaGccaaI OaGaam4CaiaaiMcaaeaacaaI9aWaaOaaaeaacaaIYaaaleqaaOWaam WaaeaacaaMb8+aaSaaaeaacaaIYaGaam4Caaqaaiabeo7aNjaaygW7 cqGHsislcaaMb8UaaGymaaaacaaMb8oacaGLBbGaayzxaaWaaWbaaS qabeaadaWcaaqaaiabeo7aNbqaaiaaikdaaaGaeyOeI0IaaGymaaaa kiaaygW7caaMb8UaaGzaVlaadwgadaahaaWcbeqaaiabgkHiTmaala aabaGaamyAaiaadohadaahaaqabeaacaaIYaaaaaqaaiaaikdaaaGa eyOeI0YaaSaaaeaacaWGPbGaeqiWdaNaeq4SdCgabaGaaGioaaaacq GHsisldaWcaaqaaiaadMgacqaHapaCaeaacaaI0aaaaaaakiaaiUfa caaIOaGaeq4SdCMaaGzaVlabgkHiTiaaygW7caaIXaGaaGykaiaadw gacaaIDbWaaWbaaSqabeaadaWcaaqaaiabeo7aNjabgkHiTiaaigda aeaacaaI0aaaaaaakiaaiYcacaaMf8UaeqiYdK3aaSbaaSqaaiaaiY dacaaISaGaeyOeI0cabeaakiaaiIcacaWGZbGaaGykaiaai2dadaGc aaqaaiaaikdaaSqabaGcdaWadaqaaiaaygW7daWcaaqaaiaaikdaca WGZbaabaGaeq4SdCMaaGzaVlabgkHiTiaaygW7caaIXaaaaiaaygW7 aiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTmaalaaabaGaeq4SdC gabaGaaGOmaaaaaaGccaaMb8UaaGzaVlaaygW7caWGLbWaaWbaaSqa beaadaWcaaqaaiaadMgacaWGZbWaaWbaaeqabaGaaGOmaaaaaeaaca aIYaaaaiabgUcaRmaalaaabaGaamyAaiabec8aWjabeo7aNbqaaiaa iIdaaaGaeyOeI0YaaSaaaeaacaWGPbGaeqiWdahabaGaaGOmaaaaaa GccaaIBbGaaGikaiabeo7aNjaaygW7cqGHsislcaaMb8UaaGymaiaa iMcacaWGLbGaaGyxamaaCaaaleqabaGaeyOeI0YaaSaaaeaacqaHZo WzcqGHsislcaaIXaaabaGaaGinaaaaaaaakeaacqaHipqEdaWgaaWc baGaaGOpaiaaiYcacqGHRaWkaeqaaOGaaGikaiaadohacaaIPaaaba GaaGypamaakaaabaGaaGOmaaWcbeaakmaadmaabaWaaSaaaeaacaaI YaGaam4Caaqaaiabeo7aNjaaygW7cqGHsislcaaMb8UaaGymaaaaai aawUfacaGLDbaadaahaaWcbeqaamaalaaabaGaeq4SdCgabaGaaGOm aaaacqGHsislcaaIXaaaaOGaamyzamaaCaaaleqabaWaaSaaaeaaca WGPbGaam4CamaaCaaabeqaaiaaikdaaaaabaGaaGOmaaaacqGHRaWk daWcaaqaaiaadMgacqaHapaCcqaHZoWzaeaacaaI4aaaaiabgkHiTm aalaaabaGaamyAaiabec8aWbqaaiaaikdaaaGaeyOeI0YaaSaaaeaa cqaHZoWzcqGHsislcaaIXaaabaGaaGinaaaaaaGccaaIBbGaaGikai abeo7aNjaaygW7cqGHsislcaaMb8UaaGymaiaaiMcacaWGLbGaaGyx amaaCaaaleqabaWaaSaaaeaacqaHZoWzcqGHsislcaaIXaaabaGaaG inaaaaaaaaaaaa@EE34@  (24)

Now, to proceed further we need to find exact solutions of Eq. (22)

3.1 Exact solution at the double branch point. Match with semiclassical wave functions.

Introducing variable change: ζ= a/ε s e iπ/4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdONaaG ypamaakaaabaGaamyyaiaai+cacqaH1oqzaSqabaGccaWGZbGaamyz amaaCaaaleqabaGaeyOeI0IaamyAaiabec8aWjaai+cacaaI0aaaaa aa@4514@ , we obtain the differential equation

ψ 1 '' +( s 2 2iδεa/ε) ψ 1 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aa0 baaSqaaiaaigdaaeaacaWGNaGaam4jaaaakiabgUcaRiaaiIcacaWG ZbWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGOmaiaadMgacqaH0o azcqaH1oqzcaWGHbGaaG4laiabew7aLjaaiMcacqaHipqEdaWgaaWc baGaaGymaaqabaGccaaI9aGaaGimaiaai6caaaa@4E72@  (25)

The standard change: ψ 1 (s)= e i s 2 /2 χ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaaigdaaeqaaOGaaGikaiaadohacaaIPaGaaGypaiaadwga daahaaWcbeqaaiabgkHiTiaadMgacaWGZbWaaWbaaeqabaGaaGOmaa aacaaIVaGaaGOmaaaakiabeE8aJbaa@45E8@  turns it into an equation with linear coefficients:

χ '' 2is χ ' iγχ,γ=1+2εa δε ε . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaW baaSqabeaacaWGNaGaam4jaaaakiabgkHiTiaaikdacaWGPbGaam4C aiabeE8aJnaaCaaaleqabaGaam4jaaaakiabgkHiTiaadMgacqaHZo WzcqaHhpWycaaISaGaaGzbVlabeo7aNjaai2dacaaIXaGaey4kaSIa aGOmaiabew7aLjaadggadaWcaaqaaiabes7aKjabew7aLbqaaiabew 7aLbaacaaIUaaaaa@5602@  (26)

Laplace procedure yields:

χ(s)=A C e st+i t 2 /4 t γ/21 dt,A= 1 2π e iπ 8 (γ1) ε a 1/4 e γ1 4 (γ1) γ 4 3 4 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaG ikaiaadohacaaIPaGaaGypaiaadgeadaWdrbqabSqaaiaadoeaaeqa niabgUIiYdGccaWGLbWaaWbaaSqabeaacaWGZbGaamiDaiabgUcaRi aadMgacaWG0bWaaWbaaeqabaGaaGOmaaaacaaIVaGaaGinaaaakiaa dshadaahaaWcbeqaaiabeo7aNjaai+cacaaIYaGaeyOeI0IaaGymaa aakiaayIW7caWGKbGaamiDaiaaiYcacaaMf8Uaamyqaiaai2dadaWc aaqaaiaaigdaaeaadaGcaaqaaiaaikdacqaHapaCaSqabaaaaOGaam yzamaaCaaaleqabaGaeyOeI0YaaSaaaeaacaWGPbGaeqiWdahabaGa aGioaaaacaaIOaGaeq4SdCMaeyOeI0IaaGymaiaaiMcaaaGcdaqada qaamaalaaabaGaeqyTdugabaGaamyyaaaaaiaawIcacaGLPaaadaah aaWcbeqaaiaaigdacaaIVaGaaGinaaaakmaalaaabaGaamyzamaaCa aaleqabaWaaSaaaeaacqaHZoWzcqGHsislcaaIXaaabaGaaGinaaaa aaaakeaacaaIOaGaeq4SdCMaeyOeI0IaaGymaiaaiMcadaahaaWcbe qaamaalaaabaGaeq4SdCgabaGaaGinaaaacqGHsisldaWcaaqaaiaa iodaaeaacaaI0aaaaaaaaaGccaaISaaaaa@7A40@  (27)

where contour C MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@38CF@  is chosen in such a way that function V= e st+i t 2 /4 t γ/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dacaWGLbWaaWbaaSqabeaacaWGZbGaamiDaiabgUcaRiaadMgacaWG 0bWaaWbaaeqabaGaaGOmaaaacaaIVaGaaGinaaaakiaadshadaahaa Wcbeqaaiabeo7aNjaai+cacaaIYaaaaaaa@461B@  assumes identical values on its end points. The choice of the contour and the branch cut is dictated by the asymptotic behavior. Using saddle point approximation we obtain for the asymtptics on the right anti-Stokes line:

χ(s )| argζ=iπ/4 = 4π (2s) γ 2 1 e i s 2 2 + iπ 4 ,χ(s )| argζ=3πi/4 = e i s 2 2 + iπ 4 2isin πγ 2 e iπγ 4 Γ γ 2 s γ/2 e i s 2 /2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4XdmMaaG ikaiaadohacaaIPaGaaGiFamaaBaaaleaacaqGHbGaamOCaiaadEga caaMi8UaeqOTdONaaGypaiabgkHiTiaadMgacqaHapaCcaaIVaGaaG inaaqabaGccaaI9aWaaOaaaeaacaaI0aGaeqiWdahaleqaaOGaaGik aiaaikdacaWGZbGaaGykamaaCaaaleqabaWaaSaaaeaacqaHZoWzae aacaaIYaaaaiabgkHiTiaaigdaaaGccaWGLbWaaWbaaSqabeaacqGH sisldaWcaaqaaiaadMgacaWGZbWaaWbaaeqabaGaaGOmaaaaaeaaca aIYaaaaiabgUcaRmaalaaabaGaamyAaiabec8aWbqaaiaaisdaaaaa aOGaaGilaiaaywW7cqaHhpWycaaIOaGaam4CaiaaiMcacaaI8bWaaS baaSqaaiaabggacaWGYbGaam4zaiaayIW7cqaH2oGEcaaI9aGaeyOe I0IaaG4maiabec8aWjaadMgacaaIVaGaaGinaaqabaGccaaI9aGaam yzamaaCaaaleqabaGaeyOeI0YaaSaaaeaacaWGPbGaam4CamaaCaaa beqaaiaaikdaaaaabaGaaGOmaaaacqGHRaWkdaWcaaqaaiaadMgacq aHapaCaeaacaaI0aaaaaaakiabgkHiTiaaikdacaWGPbGaci4Caiaa cMgacaGGUbWaaSaaaeaacqaHapaCcqaHZoWzaeaacaaIYaaaaiaadw gadaahaaWcbeqaamaalaaabaGaamyAaiabec8aWjabeo7aNbqaaiaa isdaaaaaaOWaaSaaaeaacqqHtoWrdaqadaqaamaalaaabaGaeq4SdC gabaGaaGOmaaaaaiaawIcacaGLPaaaaeaacaWGZbWaaWbaaSqabeaa cqaHZoWzcaaIVaGaaGOmaaaaaaGccaWGLbWaaWbaaSqabeaacaWGPb Gaam4CamaaCaaabeqaaiaaikdaaaGaaG4laiaaikdaaaGccaaIUaaa aa@9CBA@  (28)

Matching exact solutions with semiclassical solutions (24) we obtain:

ψ < (s)= e iπ 8 i ψ <,+ +2sin πγ 2 Γ γ 2 2π γ1 2e γ1 2 ψ <, . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaaiYdaaeqaaOGaaGikaiaadohacaaIPaGaaGypaiaadwga daahaaWcbeqaamaalaaabaGaamyAaiabec8aWbqaaiaaiIdaaaaaaO WaaeWaaeaacaWGPbGaeqiYdK3aaSbaaSqaaiaaiYdacaaISaGaey4k aScabeaakiabgUcaRiaaikdaciGGZbGaaiyAaiaac6gadaWcaaqaai abec8aWjabeo7aNbqaaiaaikdaaaWaaSaaaeaacqqHtoWrdaqadaqa amaalaaabaGaeq4SdCgabaGaaGOmaaaaaiaawIcacaGLPaaaaeaada GcaaqaaiaaikdacqaHapaCaSqabaaaaOWaamWaaeaadaWcaaqaaiab eo7aNjabgkHiTiaaigdaaeaacaaIYaGaamyzaaaaaiaawUfacaGLDb aadaahaaWcbeqaamaalaaabaGaeq4SdCMaeyOeI0IaaGymaaqaaiaa ikdaaaaaaOGaeqiYdK3aaSbaaSqaaiaaiYdacaaISaGaeyOeI0cabe aaaOGaayjkaiaawMcaaiaai6caaaa@6A92@  (29)

which gives us the reflection coefficient in the form

R= 2 π | cos 2 πaδε v F Γ 1 2 + aδε v F | 2 aδε e v F 2aδε v F exp 4 Im x 0 z 0 ε 2 ( φ 2 +1) μ 2 φ 2 +1 dz , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaai2 dadaWcaaqaaiaaikdaaeaacqaHapaCaaGaaGiFamaavacabeWcbeqa aiaaikdaaOqaaiGacogacaGGVbGaai4Caaaadaqadaqaamaalaaaba GaeqiWdaNaamyyaiabes7aKjabew7aLbqaaiabl+qiOjaadAhadaWg aaWcbaGaamOraaqabaaaaaGccaGLOaGaayzkaaGaeu4KdC0aaeWaae aadaWcaaqaaiaaigdaaeaacaaIYaaaaiabgUcaRmaalaaabaGaamyy aiabes7aKjabew7aLbqaaiaadAhadaWgaaWcbaGaamOraaqabaGccq WIpecAaaaacaGLOaGaayzkaaGaaGiFamaaCaaaleqabaGaaGOmaaaa kmaaemaabaWaaSaaaeaacaWGHbGaeqiTdqMaeqyTdugabaGaamyzai abl+qiOjaadAhadaWgaaWcbaGaamOraaqabaaaaaGccaGLhWUaayjc SdWaaWbaaSqabeaadaWcaaqaaiaaikdacaWGHbGaeqiTdqMaeqyTdu gabaGaeS4dHGMaamODamaaBaaabaGaamOraaqabaaaaaaakiGacwga caGG4bGaaiiCamaabmaabaGaeyOeI0YaaSaaaeaacaaI0aaabaGaeS 4dHGgaaiaabMeacaWGTbWaa8qmaeqaleaacaWG4bWaaSbaaeaacaaI WaaabeaaaeaacaWG6bWaaSbaaeaacaaIWaaabeaaa0Gaey4kIipakm aalaaabaWaaOaaaeaacqaH1oqzdaahaaWcbeqaaiaaikdaaaGccaaI OaGaeqOXdO2aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGymaiaaiM cacqGHsislcqaH8oqBdaahaaWcbeqaaiaaikdaaaaabeaaaOqaaiab eA8aQnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaaaGaaGjcVl aadsgacaWG6baacaGLOaGaayzkaaGaaGilaaaa@919F@  (30)

where we restored v F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGgbaabeaaaaa@39F9@  and Planck’s constant MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeS4dHGgaaa@3930@  from dimensional considerations. Here, point x 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaaaaa@39EA@  as was mentioend before, should be chosen somewhere on the real axis (a particular choice of x 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaaIWaaabeaaaaa@39EA@  doesn’t affect the imaginary part of the integral). Eq. (30) is one of the main results of the paper. Due to the presence of the pre-exponential factor, the reflection coefficient R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaaaa@38DE@  reveals quantum oscillations as a function of the energy of the incident particle ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@39AE@  for general type of analytic potentials. It is important to stress, that result (30) cannot be continued to the case of small or vanishing magnetic fields μ0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0Maey OKH4QaaGimaaaa@3C64@ , since δεεμε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqMaeq yTduMaeyyyIORaeqyTduMaeyOeI0IaeqiVd0weeuuDJXwAKbsr4rNC HbacfaGae8NAI0JaeqyTdugaaa@48F7@  and ε v F a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduweeu uDJXwAKbsr4rNCHbacfaGae83AI8ZaaSaaaeaacqWIpecAcaWG2bWa aSbaaSqaaiaadAeaaeqaaaGcbaGaamyyaaaaaaa@43B6@ .

4 Potential with a second-order pole

In this part of the paper we would like to expand the treatment in paper [14] on the case of a yet another type of deformation profile. In paper [14] only the potentials with the first order pole in the complex plane were considered. These are the so-called Lorentzian-type potentials. Now we would like to expand this treatment and consider the case of the potential which has the second-order pole on the complex plane. Eventually, our method paves the way for the treatment of the potential possessing the pole of any order in the complex plane. However, as the order of the pole gets higher, the respective analytic expressions become quite cumbersome. Therefore, we restrict our attention to the doable case of the second order pole. As in [14] we perform the Laurent expansion near the pole:

φ(z)= i a 2 (z z p ) 2 +... MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadQhacaaIPaGaaGypamaalaaabaGaamyAaiaadggadaahaaWc beqaaiaaikdaaaaakeaacaaIOaGaamOEaiabgkHiTiaadQhadaWgaa WcbaGaamiCaaqabaGccaaIPaWaaWbaaSqabeaacaaIYaaaaaaakiab gUcaRiaai6cacaaIUaGaaGOlaaaa@493E@  (31)

As before, the complex parameter a MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyaaaa@38ED@  sets the scale of the deformation profile: |a| a 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGiFaiaadg gacaaI8bqeeuuDJXwAKbsr4rNCHbacfaGae8hpIOJaamyyamaaBaaa leaacaaIWaaabeaaaaa@427E@ . Next, according to step 2 of the P-Kh method, we proceed with the semiclassical study of the respective Dirac equation in the vicinity of the pole z p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGWbaabeaaaaa@3A27@ .

4.1 The semiclassical solution in the vicinity of the pole

The equation for anti-Stokes lines is easily obtained in the vicinity of point z p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaBa aaleaacaWGWbaabeaaaaa@3A27@  along the lines outlined in step 2 of P-Kh procedure. With the help of potential expansion (31) we obtain:

Im 0 ζ π(t)dt=Im iε a 2 0 ζ t 2 dt = εRe ζ 3 3 a 2 =0argζ= 2arga 3 π 6 + πn 3 ,n. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeysaiaad2 gadaWdXaqabSqaaiaaicdaaeaacqaH2oGEa0Gaey4kIipakiabec8a WjaaiIcacaWG0bGaaGykaiaayIW7caWGKbGaamiDaiaai2dacaqGjb GaamyBamaadmaabaGaeyOeI0YaaSaaaeaacaWGPbGaeqyTdugabaGa amyyamaaCaaaleqabaGaaGOmaaaaaaGcdaWdXaqabSqaaiaaicdaae aacqaH2oGEa0Gaey4kIipakiaadshadaahaaWcbeqaaiaaikdaaaGc caWGKbGaamiDaaGaay5waiaaw2faaiaai2dacqGHsisldaWcaaqaai abew7aLjaabkfacaWGLbGaaGjcVlabeA7a6naaCaaaleqabaGaaG4m aaaaaOqaaiaaiodacaWGHbWaaWbaaSqabeaacaaIYaaaaaaakiaai2 dacaaIWaGaaGjbVlabgkDiElaabggacaWGYbGaam4zaiaayIW7cqaH 2oGEcaaI9aWaaSaaaeaacaaIYaGaaeyyaiaadkhacaWGNbGaaGjcVl aadggaaeaacaaIZaaaaiabgkHiTmaalaaabaGaeqiWdahabaGaaGOn aaaacqGHRaWkdaWcaaqaaiabec8aWjaad6gaaeaacaaIZaaaaiaaiY cacaaMf8UaamOBaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbst HrhAGq1DVbacfaGae8hjHOLaaGOlaaaa@8F7C@  (32)

Here, as before ζz z p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdONaey yyIORaamOEaiabgkHiTiaadQhadaWgaaWcbaGaamiCaaqabaaaaa@3F99@ . We see that anti-Stokes lines form π/6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWdaNaaG 4laiaaiAdaaaa@3B3D@  directions (up to the rotation by arga MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeyyaiaadk hacaWGNbGaamyyaaaa@3BB4@  ) with the real axis. Finally, we are ready to write down the semiclassical solutions:

ψ 1+, = ε+μ ε ζ 3 a 3 εμ e ε+μ 3 a 2 ζ 3 + 3πi 4 ψ 1,< = 2(εμ) ζ a e i(εμ) 3 a 2 ζ 3 + iπ 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaaigdacqGHRaWkcaaISaWefv3ySLgznfgDOjdaryqr1ngB PrginfgDObcv39gaiuaacqWF3jcPaeqaaOGaaGypamaalaaabaGaeq yTduMaey4kaSIaeqiVd0gabaGaeqyTdugaamaalaaabaGaeqOTdO3a aWbaaSqabeaacaaIZaaaaaGcbaGaamyyamaaCaaaleqabaGaaG4maa aaaaGcdaGcaaqaaiabew7aLjabgkHiTiabeY7aTbWcbeaakiaadwga daahaaWcbeqaaiabgkHiTmaalaaabaGaeqyTduMaey4kaSIaeqiVd0 gabaGaaG4maiaadggadaahaaqabeaacaaIYaaaaaaacqaH2oGEdaah aaqabeaacaaIZaaaaiabgUcaRmaalaaabaGaaG4maiabec8aWjaadM gaaeaacaaI0aaaaaaakiaaywW7cqaHipqEdaWgaaWcbaGaaGymaiab gkHiTiaaiYcacaaI8aaabeaakiaai2dadaGcaaqaaiaaikdacaaIOa GaeqyTduMaeyOeI0IaeqiVd0MaaGykaaWcbeaakmaalaaabaGaeqOT dOhabaGaamyyaaaacaWGLbWaaWbaaSqabeaadaWcaaqaaiaadMgaca aIOaGaeqyTduMaeyOeI0IaeqiVd0MaaGykaaqaaiaaiodacaWGHbWa aWbaaeqabaGaaGOmaaaaaaGaeqOTdO3aaWbaaeqabaGaaG4maaaacq GHRaWkdaWcaaqaaiaadMgacqaHapaCaeaacaaI0aaaaaaaaaa@8A18@  (33)

4.2 The exact solution in the vicinity of the pole. Match with semiclassical solutions.

The principal and most nontrivial part of the solution is to obtain the exact solution near the pole. The differential equation in the vicinity of the pole has a quite terrifying appearance. However, due to the presence of initial external initial TR -symmetry, the educated substitutes drastically simplify it. The semiclassical solution of the differential equation looks as follows: ψ s (ζ)=ζexp[(εμ) ζ 3 /(3 a 2 )] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaadohaaeqaaOGaaGikaiabeA7a6jaaiMcacaaI9aGaeqOT dONaciyzaiaacIhacaGGWbGaaG4waiaaiIcacqaH1oqzcqGHsislcq aH8oqBcaaIPaGaeqOTdO3aaWbaaSqabeaacaaIZaaaaOGaaG4laiaa iIcacaaIZaGaamyyamaaCaaaleqabaGaaGOmaaaakiaaiMcacaaIDb aaaa@5264@ . As a result, the substitute ψ 1 (ζ)= ψ s (ζ)ψ(ζ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaaigdaaeqaaOGaaGikaiabeA7a6jaaiMcacaaI9aGaeqiY dK3aaSbaaSqaaiaadohaaeqaaOGaaGikaiabeA7a6jaaiMcacqaHip qEcaaIOaGaeqOTdONaaGykaaaa@49BD@  leads to a much simpler equation

a 2 ζ ψ (ζ) a 2 ζ 3 (μ+ϵ) ψ (ζ) a 4 2 a 2 ζ 3 (2μ+3ϵ)+2 ζ 6 ϵ(μ+ϵ) =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaCa aaleqabaGaaGOmaaaakiabeA7a6jqbeI8a5zaafyaafaGaaGikaiab eA7a6jaaiMcadaWadaqaaiaadggadaahaaWcbeqaaiaaikdaaaGccq GHsislcqaH2oGEdaahaaWcbeqaaiaaiodaaaGccaaIOaGaeqiVd0Ma ey4kaSYefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiuGacq WF1pG8caaIPaaacaGLBbGaayzxaaGaeyOeI0IafqiYdKNbauaacaaI OaGaeqOTdONaaGykamaadmaabaGaamyyamaaCaaaleqabaGaaGinaa aakiabgkHiTiaaikdacaWGHbWaaWbaaSqabeaacaaIYaaaaOGaeqOT dO3aaWbaaSqabeaacaaIZaaaaOGaaGikaiaaikdacqaH8oqBcqGHRa WkcaaIZaGae8x9diVaaGykaiabgUcaRiaaikdacqaH2oGEdaahaaWc beqaaiaaiAdaaaGccqWF1pG8caaIOaGaeqiVd0Maey4kaSIae8x9di VaaGykaaGaay5waiaaw2faaiaai2dacaaIWaGaaGOlaaaa@7F39@  (34)

Eq. (34) is integrated in quadratures:

ψ 1 (ζ)=ζ e ζ 3 (ϵμ) 3 a 2 c 1 2Γ 2 3 , 2 ζ 3 ϵ 3 a 2 3 μ ϵ +1 Γ 5 3 , 2 ζ 3 ϵ 3 a 2 + c 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaaigdaaeqaaOGaaGikaiabeA7a6jaaiMcacaaI9aGaeqOT dONaamyzamaaCaaaleqabaWaaSaaaeaacqaH2oGEdaahaaqabeaaca aIZaaaaiaaiIcatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz aGqbciab=v=aYlabgkHiTiabeY7aTjaaiMcaaeaacaaIZaGaamyyam aaCaaabeqaaiaaikdaaaaaaaaakmaadmaabaGaam4yamaaBaaaleaa caaIXaaabeaakmaacmaabaGaaGOmaiabfo5ahnaabmaabaWaaSaaae aacaaIYaaabaGaaG4maaaacaaISaWaaSaaaeaacaaIYaGaeqOTdO3a aWbaaSqabeaacaaIZaaaaOGae8x9dipabaGaaG4maiaadggadaahaa WcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaeyOeI0IaaG4mamaa bmaabaWaaSaaaeaacqaH8oqBaeaacqWF1pG8aaGaey4kaSIaaGymaa GaayjkaiaawMcaaiabfo5ahnaabmaabaWaaSaaaeaacaaI1aaabaGa aG4maaaacaaISaWaaSaaaeaacaaIYaGaeqOTdO3aaWbaaSqabeaaca aIZaaaaOGae8x9dipabaGaaG4maiaadggadaahaaWcbeqaaiaaikda aaaaaaGccaGLOaGaayzkaaaacaGL7bGaayzFaaGaey4kaSIaam4yam aaBaaaleaacaaIYaaabeaaaOGaay5waiaaw2faaiaaiYcaaaa@8553@  (35)

where Γ(a,z)= z t a1 e t dt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCKaaG ikaiaadggacaaISaGaamOEaiaaiMcacaaI9aWaa8qmaeqaleaacaWG 6baabaGaeyOhIukaniabgUIiYdGccaWG0bWaaWbaaSqabeaacaWGHb GaeyOeI0IaaGymaaaakiaadwgadaahaaWcbeqaaiabgkHiTiaadsha aaGccaaMi8Uaamizaiaadshaaaa@4D12@  is the incomplete Γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCeaaa@396F@  - function.

Now we need to find the asymptotics and match it with semiclassical solutions. The asymptotics read:

ψ 1 (ζ) = ζ+ c 2 ζ e ζ 3 (ϵμ) 3 a 2 2 2/3 3 3 c 1 ζ 3 ϵ(μ+ϵ) e ζ 3 (μ+ϵ) 3 a 2 (aϵ) 4/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaaigdaaeqaaOGaaGikaiabeA7a6jaaiMcadaWfqaqaaiaa i2daaSqaaiabeA7a6jabgkziUkabgUcaRiabg6HiLcqabaGccaWGJb WaaSbaaSqaaiaaikdaaeqaaOGaeqOTdONaamyzamaaCaaaleqabaWa aSaaaeaacqaH2oGEdaahaaqabeaacaaIZaaaaiaaiIcatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=v=aYlabgkHiTiab eY7aTjaaiMcaaeaacaaIZaGaamyyamaaCaaabeqaaiaaikdaaaaaaa aakiabgkHiTmaalaaabaGaaGOmamaaCaaaleqabaGaaGOmaiaai+ca caaIZaaaaOWaaOqaaeaacaaIZaaaleaacaaIZaaaaOGaam4yamaaBa aaleaacaaIXaaabeaakmaabmaabaGaeqOTdO3aaWbaaSqabeaacaaI ZaaaaOGae8x9diVaaGikaiabeY7aTjabgUcaRiab=v=aYlaaiMcaai aawIcacaGLPaaacaWGLbWaaWbaaSqabeaacqGHsisldaWcaaqaaiab eA7a6naaCaaabeqaaiaaiodaaaGaaGikaiabeY7aTjabgUcaRiab=v =aYlaaiMcaaeaacaaIZaGaamyyamaaCaaabeqaaiaaikdaaaaaaaaa aOqaaiaaiIcacaWGHbGae8x9diVaaGykamaaCaaaleqabaGaaGinai aai+cacaaIZaaaaaaaaaa@8848@  (36)

To the right of the pole we have the transmitted wave only, hence:

c 2 =0, c 1 = e 3πi/4 1 ε 2/3 a 5/3 εμ 2 1 2 2/3 3 1/3 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaai2dacaaIWaGaaGilaiaaysW7caaMe8Ua am4yamaaBaaaleaacaaIXaaabeaakiaai2dacqGHsislcaWGLbWaaW baaSqabeaacaaIZaGaeqiWdaNaamyAaiaai+cacaaI0aaaaOWaaSaa aeaacaaIXaaabaGaeqyTdu2aaWbaaSqabeaacaaIYaGaaG4laiaaio daaaGccaWGHbWaaWbaaSqabeaacaaI1aGaaG4laiaaiodaaaaaaOWa aOaaaeaadaWcaaqaaiabew7aLjabgkHiTiabeY7aTbqaaiaaikdaaa aaleqaaOWaaSaaaeaacaaIXaaabaGaaGOmamaaCaaaleqabaGaaGOm aiaai+cacaaIZaaaaOGaaG4mamaaCaaaleqabaGaaGymaiaai+caca aIZaaaaaaakiaai6caaaa@5DF4@  (37)

Once we switch from the anti-Stokes line ζ|ζ| e iπ/6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdONaey OKH4QaaGiFaiabeA7a6jaaiYhacaWGLbWaaWbaaSqabeaacqGHsisl caWGPbGaeqiWdaNaaG4laiaaiAdaaaaaaa@45A2@  (transmitted wave) to the anti-Stokes line ζ|ζ| e 5iπ/6 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdONaey OKH4QaaGiFaiabeA7a6jaaiYhacaWGLbWaaWbaaSqabeaacqGHsisl caaI1aGaamyAaiabec8aWjaai+cacaaI2aaaaaaa@4661@  (incident wave) we analytically continue Γ(a,z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCKaaG ikaiaadggacaaISaGaamOEaiaaiMcaaaa@3D6F@ . We see that the argument: 2 ζ 3 ε/(3 a 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabeA 7a6naaCaaaleqabaGaaG4maaaakiabew7aLjaai+cacaaIOaGaaG4m aiaadggadaahaaWcbeqaaiaaikdaaaGccaaIPaaaaa@41CF@  rotates by 2π MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG Omaiabec8aWbaa@3B6D@  as ζ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOTdOhaaa@39C4@  changes from π/6+(2/3)arga MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaeq iWdaNaaG4laiaaiAdacqGHRaWkcaaIOaGaaGOmaiaai+cacaaIZaGa aGykaiaabggacaWGYbGaam4zaiaayIW7caWGHbaaaa@45E1@  to 5π/6+(2/3)arga MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG ynaiabec8aWjaai+cacaaI2aGaey4kaSIaaGikaiaaikdacaaIVaGa aG4maiaaiMcacaqGHbGaamOCaiaadEgacaaMi8Uaamyyaaaa@46A0@  and the corresponding change in the asymptotics of the incomplete Γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCeaaa@396F@  - function:

Γ a,y e 5πi/2 = e 5πi/2 y a1 i e iy +Γ(a) e πia 2isinπa. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdC0aae WaaeaacaWGHbGaaGilaiaadMhacaWGLbWaaWbaaSqabeaacqGHsisl caaI1aGaeqiWdaNaamyAaiaai+cacaaIYaaaaaGccaGLOaGaayzkaa GaaGypaiaadwgadaahaaWcbeqaaiabgkHiTiaaiwdacqaHapaCcaWG PbGaaG4laiaaikdaaaGccaWG5bWaaWbaaSqabeaacaWGHbGaeyOeI0 IaaGymaaaakiaadMgacaWGLbWaaWbaaSqabeaacaWGPbGaamyEaaaa kiabgUcaRiabfo5ahjaaiIcacaWGHbGaaGykaiaadwgadaahaaWcbe qaaiabgkHiTiabec8aWjaadMgacaWGHbaaaOGaaGOmaiaadMgaciGG ZbGaaiyAaiaac6gacqaHapaCcaWGHbGaaGOlaaaa@6602@  (38)

This way, we find the following asymptotics of the solution:

ψ(ζ)= c 1 2 e iπ/3 3i μ ε Γ 2 3 z e εμ 3 a 2 z 3 2 2/3 3 1/3 (ε+μ) z 3 a 4/3 ε 1/3 e ε+μ 3 a 2 z 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiabeA7a6jaaiMcacaaI9aGaam4yamaaBaaaleaacaaIXaaabeaa kmaadmaabaGaaGOmaiaadwgadaahaaWcbeqaaiaadMgacqaHapaCca aIVaGaaG4maaaakmaalaaabaWaaOaaaeaacaaIZaGaamyAaaWcbeaa kiabeY7aTbqaaiabew7aLbaacqqHtoWrdaqadaqaamaalaaabaGaaG OmaaqaaiaaiodaaaaacaGLOaGaayzkaaGaamOEaiaadwgadaahaaWc beqaamaalaaabaGaeqyTduMaeyOeI0IaeqiVd0gabaGaaG4maiaadg gadaahaaqabeaacaaIYaaaaaaacaWG6bWaaWbaaeqabaGaaG4maaaa aaGccqGHsisldaWcaaqaaiaaikdadaahaaWcbeqaaiaaikdacaaIVa GaaG4maaaakiaaiodadaahaaWcbeqaaiaaigdacaaIVaGaaG4maaaa kiaaiIcacqaH1oqzcqGHRaWkcqaH8oqBcaaIPaGaamOEamaaCaaale qabaGaaG4maaaaaOqaaiaadggadaahaaWcbeqaaiaaisdacaaIVaGa aG4maaaakiabew7aLnaaCaaaleqabaGaaGymaiaai+cacaaIZaaaaa aakiaadwgadaahaaWcbeqaaiabgkHiTmaalaaabaGaeqyTduMaey4k aSIaeqiVd0gabaGaaG4maiaadggadaahaaqabeaacaaIYaaaaaaaca WG6bWaaWbaaeqabaGaaG4maaaaaaaakiaawUfacaGLDbaaaaa@7D11@  (39)

Next, the solution can be matched with the semiclassical waves to get:

ψ 1 (ζ )| left = ψ 1+,< (ζ)+ e iπ/3 μ ε 3 1/6 2 2/3 Γ 2 3 (aε) 2/3 ψ 1,< (ζ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaaigdaaeqaaOGaaGikaiabeA7a6jaaiMcacaaI8bWaaSba aSqaaiaabYgacaWGLbGaamOzaiaadshaaeqaaOGaaGypaiabeI8a5n aaBaaaleaacaaIXaGaey4kaSIaaGilaiaaiYdaaeqaaOGaaGikaiab eA7a6jaaiMcacqGHRaWkcaWGLbWaaWbaaSqabeaacaWGPbGaeqiWda NaaG4laiaaiodaaaGcdaWcaaqaaiabeY7aTbqaaiabew7aLbaadaWc aaqaaiaaiodadaahaaWcbeqaaiaaigdacaaIVaGaaGOnaaaaaOqaai aaikdadaahaaWcbeqaaiaaikdacaaIVaGaaG4maaaaaaGcdaWcaaqa aiabfo5ahnaabmaabaWaaSaaaeaacaaIYaaabaGaaG4maaaaaiaawI cacaGLPaaaaeaacaaIOaGaamyyaiabew7aLjaaiMcadaahaaWcbeqa aiaaikdacaaIVaGaaG4maaaaaaGccqaHipqEdaWgaaWcbaGaaGymai abgkHiTiaaiYcacaaI8aaabeaakiaaiIcacqaH2oGEcaaIPaGaaGOl aaaa@6FBC@  (40)

As a result, we match the solution with the semiclassical waves (33) to obtain the reflection coefficient:

R= μ 2 ε 2 3 1/3 2 4/3 Γ 2 2 3 (aε) 4/3 exp 4 Im x 0 z 0 ε 2 ( φ 2 +1) μ 2 φ 2 +1 dz MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaai2 dadaWcaaqaaiabeY7aTnaaCaaaleqabaGaaGOmaaaaaOqaaiabew7a LnaaCaaaleqabaGaaGOmaaaaaaGcdaWcaaqaaiaaiodadaahaaWcbe qaaiaaigdacaaIVaGaaG4maaaaaOqaaiaaikdadaahaaWcbeqaaiaa isdacaaIVaGaaG4maaaaaaGcdaWcaaqaaiabfo5ahnaaCaaaleqaba GaaGOmaaaakmaabmaabaWaaSaaaeaacaaIYaaabaGaaG4maaaaaiaa wIcacaGLPaaaaeaacaaIOaGaamyyaiabew7aLjaaiMcadaahaaWcbe qaaiaaisdacaaIVaGaaG4maaaaaaGcciGGLbGaaiiEaiaacchadaqa daqaaiabgkHiTmaalaaabaGaaGinaaqaaiabl+qiObaacaqGjbGaam yBamaapedabeWcbaGaamiEamaaBaaabaGaaGimaaqabaaabaGaamOE amaaBaaabaGaaGimaaqabaaaniabgUIiYdGcdaWcaaqaamaakaaaba GaeqyTdu2aaWbaaSqabeaacaaIYaaaaOGaaGikaiabeA8aQnaaCaaa leqabaGaaGOmaaaakiabgUcaRiaaigdacaaIPaGaeyOeI0IaeqiVd0 2aaWbaaSqabeaacaaIYaaaaaqabaaakeaacqaHgpGAdaahaaWcbeqa aiaaikdaaaGccqGHRaWkcaaIXaaaaiaayIW7caWGKbGaamOEaaGaay jkaiaawMcaaaaa@73E2@  (41)

Eq. (41) complements result (30) for the case of not very slow edge excitations: εμ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduweeu uDJXwAKbsr4rNCHbacfaGae8hpIOJaeqiVd0gaaa@411D@ . However, the value of result (41) lies in the fact, that it can be continued to the case of a zero magnetic field, where, according to TR-symmetry the reflection coefficient must strictly vanish. And indeed, we see, that at R μ0 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuamaaxa babaGaeyOKH4kaleaacqaH8oqBcqGHsgIRcaaIWaaabeaakiaaicda aaa@4025@ . To check the consistency of the result we complement our study with the perturbation theory in μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@39BD@  in what follows. Our goal is to match result (41) with the perturbative calculation for the case of smooth deformation.

5 Perturbation theory in μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@39BD@ .

We need to analyze the scattering problem in the weak magnetic field limit με MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0weeu uDJXwAKbsr4rNCHbacfaGae8NAI0JaeqyTdugaaa@414E@ , restricting ourselves to the first Born approximation. TR-symmetry of the problem gives us a nice present here. Surprisingly, we have found an exact solution of the Dirac equation (4) in the absence of the magnetic field μ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG ypaiaaicdaaaa@3B3E@  for any deformation potential [14]. Expectedly, due to TR-symmetry, the exact solution is reflectionless. Now we are going to see, how even the slightest magnetic field affects the analytical structure of the solution and leads to non-zero reflection in the problem.

5.1 Exact solution

Let us rewrite the initial Hamiltonian in the absence of magnetic field:

H= v F σ y p ^ + σ z 2 (φ p ^ + p ^ φ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaiaai2 dacaWG2bWaaSbaaSqaaiaadAeaaeqaaOGaeq4Wdm3aaSbaaSqaaiaa dMhaaeqaaOGabmiCayaajaGaey4kaSYaaSaaaeaacqaHdpWCdaWgaa WcbaGaamOEaaqabaaakeaacaaIYaaaaiaaiIcacqaHgpGAceWGWbGb aKaacqGHRaWkceWGWbGbaKaacqaHgpGAcaaIPaaaaa@4C04@  (42)

It happens one can contrive a unitary transformation

ψ(x)= U ^ (x) ψ ˜ (x), U ^ (x)=exp[iθ(x) σ x ],tan2θ(x)= φ 1 (x),, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdKNaaG ikaiaadIhacaaIPaGaaGypaiqadwfagaqcaiaaiIcacaWG4bGaaGyk aiqbeI8a5zaaiaGaaGikaiaadIhacaaIPaGaaGilaiaaywW7ceWGvb GbaKaacaaIOaGaamiEaiaaiMcacaaI9aGaciyzaiaacIhacaGGWbGa aG4waiaadMgacqaH4oqCcaaIOaGaamiEaiaaiMcacqaHdpWCdaWgaa WcbaGaamiEaaqabaGccaaIDbGaaGilaiaaywW7ciGG0bGaaiyyaiaa c6gacaaIYaGaeqiUdeNaaGikaiaadIhacaaIPaGaaGypaiabeA8aQn aaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIcacaWG4bGaaGykaiaa iYcacaaISaaaaa@699D@  (43)

turning Hamiltonian (42) to much simpler form [14]:

H ˜ = 1 2 (v p ^ + p ^ v) σ z , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmisayaaia GaaGypamaalaaabaGaaGymaaqaaiaaikdaaaGaaGikaiaadAhaceWG WbGbaKaacqGHRaWkceWGWbGbaKaacaWG2bGaaGykaiabeo8aZnaaBa aaleaacaWG6baabeaakiaaiYcaaaa@4526@  (44)

where v(x)= v F φ 2 (x)+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaaiI cacaWG4bGaaGykaiaai2dacaWG2bWaaSbaaSqaaiaadAeaaeqaaOWa aOaaaeaacqaHgpGAdaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEai aaiMcacqGHRaWkcaaIXaaaleqaaaaa@44F1@ . Hamiltonian (44) has the following exact eigenfunctions (see the derivation in [14]):

ψ ε (x)= e iετ(x) v(x) 1 0 , ψ ε (x)= e iετ(x) v(x) 0 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbeaeaacq aHipqEdaWgaaWcbaGaeqyTdugabeaaaeaacqGHsgIRaeqaaOGaaGik aiaadIhacaaIPaGaaGypamaalaaabaGaamyzamaaCaaaleqabaGaam yAaiabew7aLjabes8a0jaaiIcacaWG4bGaaGykaaaaaOqaamaakaaa baGaamODaiaaiIcacaWG4bGaaGykaaWcbeaaaaGcdaqadaqaauaabe qaceaaaeaacaaIXaaabaGaaGimaaaaaiaawIcacaGLPaaacaaISaGa aGzbVpaaxababaGaeqiYdK3aaSbaaSqaaiabew7aLbqabaaabaGaey iKHWkabeaakiaaiIcacaWG4bGaaGykaiaai2dadaWcaaqaaiaadwga daahaaWcbeqaaiabgkHiTiaadMgacqaH1oqzcqaHepaDcaaIOaGaam iEaiaaiMcaaaaakeaadaGcaaqaaiaadAhacaaIOaGaamiEaiaaiMca aSqabaaaaOWaaeWaaeaafaqabeGabaaabaGaaGimaaqaaiaaigdaaa aacaGLOaGaayzkaaGaaGilaaaa@6ABC@  (45)

τ(x)= 0 x d x v( x ) 0 x d x φ 2 ( x ' )+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG ikaiaadIhacaaIPaGaaGypamaapehabeWcbaGaaGimaaqaaiaadIha a0Gaey4kIipakmaalaaabaGaamizaiqadIhagaqbaaqaaiaadAhaca aIOaGabmiEayaafaGaaGykaaaacqGHHjIUdaWdXbqabSqaaiaaicda aeaacaWG4baaniabgUIiYdGcdaWcaaqaaiaadsgaceWG4bGbauaaae aadaGcaaqaaiabeA8aQnaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG 4bWaaWbaaSqabeaacaWGNaaaaOGaaGykaiabgUcaRiaaigdaaSqaba aaaOGaaGOlaaaa@56F0@  (46)

And one clearly sees that the forward moving exact solution in (45) remains such in the entire real axis and we have the reflectionless situation expected from the TR symmetry of the system.

5.2 Perturbation theory in μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0gaaa@39BD@ .

To build the perturbation theory, we need the Green’s function for the transformed Hamiltonian (44) [14]:

G(ϵ;x, x )= i 2 (1+sign[τ(x)τ( x )] σ z ) e iϵ|τ(x)τ( x )| v(x)v( x ) , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI catuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbciab=v=a YlaaiUdacaWG4bGaaGilaiqadIhagaqbaiaaiMcacaaI9aGaeyOeI0 YaaSaaaeaacaWGPbaabaGaaGOmaaaacaaIOaGaaGymaiabgUcaRiaa bohacaqGPbGaae4zaiaab6gacaaIBbGaeqiXdqNaaGikaiaadIhaca aIPaGaeyOeI0IaeqiXdqNaaGikaiqadIhagaqbaiaaiMcacaaIDbGa eq4Wdm3aaSbaaSqaaiaadQhaaeqaaOGaaGykamaalaaabaGaamyzam aaCaaaleqabaGaamyAaiab=v=aYlaaiYhacqaHepaDcaaIOaGaamiE aiaaiMcacqGHsislcqaHepaDcaaIOaGabmiEayaafaGaaGykaiaaiY haaaaakeaadaGcaaqaaiaadAhacaaIOaGaamiEaiaaiMcacaWG2bGa aGikaiqadIhagaqbaiaaiMcaaSqabaaaaOGaaGilaaaa@796E@  (47)

where sign(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4CaiaadM gacaWGNbGaamOBaiaayIW7caaIOaGaamiEaiaaiMcaaaa@3FBD@  is a sign function. Then we consider the perturbation created by magnetic field; in the initial basis it is V=μ σ z MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiaai2 dacqaH8oqBcqaHdpWCdaWgaaWcbaGaamOEaaqabaaaaa@3E4D@ . Under the unitary transformation U ^ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyvayaaja aaaa@38F1@  it becomes:

V ˜ (x)= μ φ 2 (x)+1 φ(x) σ z σ y . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOvayaaia GaaGikaiaadIhacaaIPaGaaGypamaalaaabaGaeqiVd0gabaGaeqOX dO2aaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaIPaGaey4kaS IaaGymaaaadaWadaqaaiabeA8aQjaaiIcacaWG4bGaaGykaiabeo8a ZnaaBaaaleaacaWG6baabeaakiabgkHiTiabeo8aZnaaBaaaleaaca WG5baabeaaaOGaay5waiaaw2faaiaai6caaaa@5234@  (48)

Then, the reflected wave is given by the perturbation theory:

ψ ref (x)= G(ϵ;x, x ' ) V ˜ ( x ' ) ψ ε ( x ' )d x ' . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaabkhacaWGLbGaamOzaaqabaGccaaIOaGaamiEaiaaiMca caaI9aGaeyOeI0Yaa8qCaeqaleaacqGHsislcqGHEisPaeaacqGHEi sPa0Gaey4kIipakiaadEeacaaIOaWefv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuGacqWF1pG8caaI7aGaamiEaiaaiYcacaWG4b WaaWbaaSqabeaacaWGNaaaaOGaaGykaiqadAfagaacaiaaiIcacaWG 4bWaaWbaaSqabeaacaWGNaaaaOGaaGykamaaxababaGaeqiYdK3aaS baaSqaaiabew7aLbqabaaabaGaeyOKH4kabeaakiaaiIcacaWG4bWa aWbaaSqabeaacaWGNaaaaOGaaGykaiaayIW7caWGKbGaamiEamaaCa aaleqabaGaam4jaaaakiaai6caaaa@6BFE@  (49)

Plugging the transformed scattering potential (48), the Green’s function (47) into (49), we obtain (after some simple algebra) the reflected wave in the first order perturbation theory:

ψ ref =r ψ ε (x),r=μ e 2iετ( x ) 1+ φ 2 ( x ) d x , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiYdK3aaS baaSqaaiaabkhacaqGLbGaaeOzaaqabaGccaaI9aGaamOCamaaxaba baGaeqiYdK3aaSbaaSqaaiabew7aLbqabaaabaGaeyiKHWkabeaaki aaiIcacaWG4bGaaGykaiaaiYcacaaMf8UaamOCaiaai2dacqaH8oqB daWdXbqabSqaaiabgkHiTiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aO WaaSaaaeaacaWGLbWaaWbaaSqabeaacaaIYaGaamyAaiabew7aLjab es8a0jaaiIcaceWG4bGbauaacaaIPaaaaaGcbaGaaGymaiabgUcaRi abeA8aQnaaCaaaleqabaGaaGOmaaaakiaaiIcaceWG4bGbauaacaaI PaaaaiaadsgaceWG4bGbauaacaaISaaaaa@64C6@  (50)

where r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  is the final reflection amplitude in Born approximation. A shrewd reader is going to immediately notice that the integral defining r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaaaa@38FE@  is divergent. It can be easily argued that, one should understand this integral as a taken along the inclined directions e iπδ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Iaey OhIuQaeyOKH4QaeyOhIuQaamyzamaaCaaaleqabaGaamyAaiabec8a WjabgkHiTiabes7aKbaaaaa@4417@  and e iδ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOhIuQaey OKH4QaeyOhIuQaamyzamaaCaaaleqabaGaamyAaiabes7aKbaaaaa@4080@  where δ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdqgaaa@39AC@  is an arbitrarily small positive angle.

Now we need to match the perturbative result (50) with the semiclassical relation (41). To this end we perform integration in the integral entering (50) in the saddle point approximation. Indeed, the semiclassical case corresponds to the large parameter ετ(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaeq iXdqNaaGikaiaadIhacaaIPaaaaa@3DD5@  in the exponent of the integrand in (50). The saddle point analysis of the integral in question pleasantly resembles the semiclassical treatment undertaken in the previous section. The saddle of the τ(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG ikaiaadQhacaaIPaaaaa@3C30@  is the pole of the function φ(z) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadQhacaaIPaaaaa@3C28@ . Since the pole of the second order, so is the saddle.

τ( z p +ζ)=τ( z p )+ z p z p +ζ dt φ 2 (t)+1 =τ( z p )+ ζ 3 3i a 2 +... MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiXdqNaaG ikaiaadQhadaWgaaWcbaGaamiCaaqabaGccqGHRaWkcqaH2oGEcaaI PaGaaGypaiabes8a0jaaiIcacaWG6bWaaSbaaSqaaiaadchaaeqaaO GaaGykaiabgUcaRmaapedabeWcbaGaamOEamaaBaaabaGaamiCaaqa baaabaGaamOEamaaBaaabaGaamiCaaqabaGaey4kaSIaeqOTdOhani abgUIiYdGcdaWcaaqaaiaadsgacaWG0baabaWaaOaaaeaacqaHgpGA daahaaWcbeqaaiaaikdaaaGccaaIOaGaamiDaiaaiMcacqGHRaWkca aIXaaaleqaaaaakiaai2dacqaHepaDcaaIOaGaamOEamaaBaaaleaa caWGWbaabeaakiaaiMcacqGHRaWkdaWcaaqaaiabeA7a6naaCaaale qabaGaaG4maaaaaOqaaiaaiodacaWGPbGaamyyamaaCaaaleqabaGa aGOmaaaaaaGccqGHRaWkcaaIUaGaaGOlaiaai6caaaa@6902@  (51)

We have thee steepest descent lines sprawling from the saddle at directions φ=π/3+(2/3)arga+2πn/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ypaiabec8aWjaai+cacaaIZaGaey4kaSIaaGikaiaaikdacaaIVaGa aG4maiaaiMcacaqGHbGaamOCaiaadEgacaaMi8UaamyyaiabgUcaRi aaikdacqaHapaCcaWGUbGaaG4laiaaiodaaaa@4D39@ . Choosing the direction n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacqGHsislcaaIXaaaaa@3B69@  and n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBaiaai2 dacaaIXaaaaa@3A7C@  we obtain the two Γ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeu4KdCeaaa@396F@  -function-type integrals. As a result, the saddle point approximation yields:

e 2iετ( x ) 1+ φ 2 ( x ) d x = 1 a 4 Γ 2 3 3 3 2 2/3 a 2 ε 5/3 e iπ/3 exp 2iετ( z p ) . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaeqale aacqGHsislcqGHEisPaeaacqGHEisPa0Gaey4kIipakmaalaaabaGa amyzamaaCaaaleqabaGaaGOmaiaadMgacqaH1oqzcqaHepaDcaaIOa GabmiEayaafaGaaGykaaaaaOqaaiaaigdacqGHRaWkcqaHgpGAdaah aaWcbeqaaiaaikdaaaGccaaIOaGabmiEayaafaGaaGykaaaacaWGKb GabmiEayaafaGaaGypaiabgkHiTmaalaaabaGaaGymaaqaaiaadgga daahaaWcbeqaaiaaisdaaaaaaOWaaSaaaeaacqqHtoWrdaqadaqaam aalaaabaGaaGOmaaqaaiaaiodaaaaacaGLOaGaayzkaaaabaGaaG4m aaaadaqadaqaamaalaaabaGaaG4maaqaaiaaikdaaaaacaGLOaGaay zkaaWaaWbaaSqabeaacaaIYaGaaG4laiaaiodaaaGcdaqadaqaamaa laaabaGaamyyamaaCaaaleqabaGaaGOmaaaaaOqaaiabew7aLbaaai aawIcacaGLPaaadaahaaWcbeqaaiaaiwdacaaIVaGaaG4maaaakiaa dwgadaahaaWcbeqaaiabgkHiTiaadMgacqaHapaCcaaIVaGaaG4maa aakiGacwgacaGG4bGaaiiCamaadmaabaGaaGOmaiaadMgacqaH1oqz cqaHepaDcaaIOaGaamOEamaaBaaaleaacaWGWbaabeaakiaaiMcaai aawUfacaGLDbaacaaIUaaaaa@7AA6@  (52)

which up to a phase coincides with the reflection amplitude in (40). As a result, the reflection coefficient presented by perturbation theory (50) coincides exactly for the case of smooth potential with the weak field limit με MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0weeu uDJXwAKbsr4rNCHbacfaGae8NAI0JaeqyTdugaaa@414E@  of the semiclassical expression (41) which presents a pleasant twofold corroboration of our study.

Reflection coefficients (30) and (41) are the main results of our paper. The former predict the emergence of quantum oscillations of the 1D Landauer conductance of the slow edge excitations at uniform external magnetic field for the deformation profile of a general type.

6 Discussion

To conclude, we studied analytically the scattering of the quasiparticles on edge imperfections of 2D TI in the uniform magnetic field. We used two mutually complementing approaches: Pokrovsky-Khalatnikov method and perturbation theory in magnetic field. We obtained the reflection coefficients for two important physical situations and made sure the results obtained match in the shared domain of validity of both treatments. The study reveals the nontrivial interconnection between TR symmetry and the analytical properties of the reflection amplitude.

Our results may also be checked experimentally. The perturbation theory results are obviously valid for sufficiently small external magnetic field. The semiclassical parameter λ/ a 0 = v F /(ε a 0 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWMaaG 4laiaadggadaWgaaWcbaGaaGimaaqabaGccaaI9aGaeS4dHGMaamOD amaaBaaaleaacaWGgbaabeaakiaai+cacaaIOaGaeqyTduMaamyyam aaBaaaleaacaaIWaaabeaakiaaiMcaaaa@45D1@  is easy to estimate from typical experimental data. For 2D TI formed in gated HgTe quantum well, the Rahsba splitting parameter α10 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeweeu uDJXwAKbsr4rNCHbacfaGae8hpIOJaaGymaiaaicdaaaa@40D4@  eVÅ, [23], the Fermi velocity v F 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODamaaBa aaleaacaWGgbaabeaakiabgIKi7kaaikdaaaa@3C70@  eVÅ, [24]. We see that Rashba parameter α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdegaaa@39A6@  is approximately of the same order as Fermi velocity α v R MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeweeu uDJXwAKbsr4rNCHbacfaGae8hpIOJaamODamaaBaaaleaacaWGsbaa beaaaaa@415D@ . Therefore, for the typical experiment, the 1μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabeY 7aTbaa@3A78@  m size edge defect exceeds by far the quasiparticle wave length λ100 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdWweeu uDJXwAKbsr4rNCHbacfaGae8hpIOJaaGymaiaaicdacaaIWaaaaa@41A3@  Å, [25] which justifies the use of semiclassical approximation. Next, we would like to estimate the magnetic field at which the quantum oscillations predicted by the expression for the reflection coefficient (30) can be observed. The g MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaaaa@38F3@  - factor for helical edge states under the transverse magnetic field was measured in [26]: g50 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabgI Ki7kaaiwdacaaIWaaaaa@3C1D@ . Therefore, assuming the typical deformation scale as 1μ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8hpIOJaaGymaiaaysW7cqaH8oqBaaa@41BE@  m, the needed magnetic field is H v F /(g μ B a 0 )0.07 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGGj0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaebbfv 3ySLgzGueE0jxyaGqbaiab=XJi6iaadAhadaWgaaWcbaGaamOraaqa baGccqWIpecAcaaIVaGaaGikaiaadEgacqaH8oqBdaWgaaWcbaGaam OqaaqabaGccaWGHbWaaSbaaSqaaiaaicdaaeqaaOGaaGykaiab=XJi 6iaaicdacaaIUaGaaGimaiaaiEdaaaa@4D4F@  T.

×

About the authors

Ya. I. Rodionov

Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences

Author for correspondence.
Email: yaroslav.rodionov@gmail.com
Russian Federation, Moscow

References

  1. Nayak C., Simon S. H.,Stern A.,Freedman M., and Das Sarma S. Non-Abelian anyons and topological quantum computation // Rev. Mod. Phys.— 2008.—Sep.— Vol. 80, issue. 3— P. 1083–1159.—
  2. Moore J. The next generation // Nature Physics— 2009.—Jun.— Vol. 5, no. 6— P. 378–380.—
  3. I. Žutíc, J. Fabian, and S. Das Sarma Spintronics: Fundamentals and applications // Rev. Mod. Phys.— 2004.—Apr.— Vol. 76.— P. 323–410.—
  4. Hsieh D., Qian D., Wray L., Xia Y., Hor Y. S., Cava R. J. and Hasan M. Z. A topological Dirac insulator in a quantum spin Hall phase // Nature Physics— 2008.—Apr.— Vol. 452, no. 7190— P. 970–974.—
  5. König M., Wiedmann S., Brüne C., Roth A., Buhmann H., Molenkamp L. W., Qi X.-L., and Zhang S.-C. Quantum Spin Hall Insulator State in HgTe Quantum Wells // Science— 2007.—Nov.— Vol. 318, no. 5851— P. 766–770.—
  6. Zhang H., Liu C.-X. Qi, Dai X., Fang Z., Zhang S.- C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface // Nature Physics— 2009.—May.— Vol. 5, no. 6— P. 438–442.—
  7. Kvon Z. D.,Kozlov D. A., Olshanetsky E. B., Gusev G. M.,Mikhailov N. N., and Dvoretsky S. A. Topological insulators based on HgTe // UFN— 2020.—Jul.— Vol. 63, no. 7— P. 629–647.—
  8. Herath T. M.,Hewageegana P., Apalkov V. Electron scattering by a steplike defect in topological insulator nanofilms // Physical Review B— 2013.—Feb.— Vol. 87, no. 7— P. 075318.—
  9. Fedotov N. I., Zaitsev-Zotov S. V. Experimental search for one-dimensional edge states at surface steps of the topological insulator: Distinguishing between effects and artifacts // Physical Review B — Apr.— Vol. 95, no. 15— P. 075318.—
  10. Deb O., Soori A., Sen D., Edge states of a three-dimensional topological insulator // Journal of Physics: Condensed Matter— 2014.—Jul.— Vol. 26, no. 31— P. 315009.—
  11. Kane C. L. and Mele E. J. Quantum Spin Hall Effect in Graphene // Phys. Rev. Lett. — 2005. — Nov. — Vol. 95, no. 22— P. 226801.—
  12. Hinz J., Buhmann H., Sch¨afer M., Hock V., Becker C. R., Molenkamp L. W. Gate control of the giant Rashba effect in HgTe quantum wells // Semiconductor Science and Technology — 2006.—Mar.— Vol. 21, no. 4— P. 501–506.—
  13. Yang Hong, Peng Xiangyang, Liu Wenliang, Wei Xiaolin, Hao Guolin, He Chaoyu, Li Jin, Stocks G Malcolm, Zhong Jianxin Electric tuning of the surface and quantum well states in Bi 2 Se 3 films: a first-principles study // Journal of Physics: Condensed Matter — 2014.—aug.— Vol. 26— P. 395005.—
  14. Dotdaev A. S., Rodionov Ya. I., Rozhkov A. V., Grigoriev P. D. Semiclassical scattering by edge imperfections in topological insulators under magnetic field // arxiv — 2024. — Aug. — arXiv:2408.14540—
  15. Pokrovskii VL, Khalatnikov IM On the problem of above-barrier reflection of high-energy particles // Soviet Phys. JETP— 1961.— Vol. 13— P. 1207–1210.—
  16. Qi Xiao-Liang, Zhang Shou-Cheng Topological insulators and superconductors // Rev. Mod. Phys.— 2011.—Oct.— Vol. 83, no. 4— P. 1057–1110.—
  17. Bychkov Yu A, Rashba E I Oscillatory effects and the magnetic susceptibility of carriers in inversion layers // Journal of Physics C: Solid State Physics— 1984.—nov.— Vol. 17— P. 6039–6045.—
  18. Zhang Yi, He Ke, Chang Cui-Zu, Song Can-Li, Wang Li-Li, Chen Xi, Jia Jin-Feng, Fang Zhong, Dai Xi, Shan Wen-Yu, Shen Shun-Qing, Niu Qian, Qi Xiao-Liang, Zhang Shou-Cheng, Ma Xu-Cun, Xue Qi-Kun Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit // Nature Physics— 2010.—jun.— Vol. 6— P. 584–588.—
  19. Kernreiter Thomas, Governale M., Zuelicke Ulrich, Hankiewicz Ewelina Anomalous Spin Response and Virtual-Carrier-Mediated Magnetism in a Topological Insulator // Physical Review X— 2016.—04.— Vol. 6— P. 021010.—
  20. Zyuzin A. A., Hook M. D., Burkov A. A. Parallel magnetic field driven quantum phase transition in a thin topological insulator film // Phys. Rev. B— 2011.—Jun.— Vol. 83, no. 24— P. 245428.—
  21. Berry Michael V Semiclassically weak reflections above analytic and non-analytic potential barriers // Journal of Physics A: Mathematical and General— 1982.— Vol. 15— P. 3693.—
  22. E. T. Whittaker and G. N. Watson, A course of modern analysis: an introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions (University press, 1920).
  23. Schultz M, Heinrichs F, Merkt U, Colin T, Skauli T, Løvold S Rashba spin splitting in a gated HgTe quantum well // Semiconductor science and technology— 1996.— Vol. 11— P. 1168.—
  24. Krishtopenko S. S., Teppe F. Realistic picture of helical edge states in HgTe quantum wells // Phys. Rev. B— 2018.—Apr.— Vol. 97, no. 16— P. 165408.—
  25. Dantscher K-M, Kozlov DA, Scherr MT, Gebert Sebastian, Bärenfänger Jan, Durnev MV, Tarasenko SA, Bel’Kov VV, Mikhailov NN, Dvoretsky SA, others Photogalvanic probing of helical edge channels in two-dimensional HgTe topological insulators // Physical Review B— 2017.— Vol. 95— P. 201103.—
  26. Yakunin M.V., Podgornykh S.M., Mikhailov N.N., Dvoretsky S.A. Spin splittings in the n-HgTe/CdxHg1-xTe(013) quantum well with inverted band structure // Physica E: Low-dimensional Systems and Nanostructures— 2010.— Vol. 42— P. 948-951.—

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рис. 1: A schematic illustration of a geometric imperfection on the edge of a 2D topological insulator sample

Download (46KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».