Optimization of normal operation mode of an electric system with renewable energy sources in Mongolia
- Authors: Rusina A.G.1, Osgonbaatar T.1, Bondarchuk G.S.1, Matrenin P.V.1
-
Affiliations:
- Novosibirsk State Technical University
- Issue: Vol 27, No 4 (2023)
- Pages: 760-772
- Section: Power Engineering
- URL: https://journals.rcsi.science/2782-4004/article/view/382736
- DOI: https://doi.org/10.21285/1814-3520-2023-4-760-772
- EDN: https://elibrary.ru/OSHSWU
- ID: 382736
Cite item
Full Text
Abstract
About the authors
A. G. Rusina
Novosibirsk State Technical University
Email: anastasiarusina@gmail.com
ORCID iD: 0000-0002-2591-4162
T. Osgonbaatar
Novosibirsk State Technical University
Email: o.tuvshin.21@gmail.com
G. S. Bondarchuk
Novosibirsk State Technical University
Email: djgleban1147@gmail.com
P. V. Matrenin
Novosibirsk State Technical University
Email: pavel.matrenin@gmail.com
ORCID iD: 0000-0001-5704-0976
References
- Сидорова А.В., Черемных А.А., Русина А.Г. Python как инструментарий оптимизации режима ГЭС в составе ЭЭС // Вестник Казанского государственного энергетического университета. 2021. Т. 13. № 2. С. 119–132. EDN: RXEUZU.
- Kim Insu, Kim Beopsoo, Sidorov D. Machine learning for energy systems optimization // Energies. 2022. Vol. 15. Iss. 11. P. 4116. https://doi.org/10.3390/en15114116.
- Лыгин М.М., Корнилов Г.П., Кожевников И.О. Анализ современных методов оптимизации // Энергетические и электротехнические системы: междунар. сб. науч. тр. / под ред. С.И. Лукьянова, Е.Г. Нешпоренко. Магнитогорск: Магнитогорский государственный технический университет им. Г.И. Носова, 2019. Вып. 6. С. 4–11. EDN: RRNVRC.
- Luo Xi, Liu Yanfeng, Feng Pingan, Gao Yuan, Guo Zhenxiang. Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side // Applied Energy. 2021. Vol. 294. P. 116931. https://doi.org/10.1016/j.apenergy.2021.116931.
- Niu Ming, Wan Can, Xu Zhao. A review on applications of heuristic optimization algorithms for optimal power flow in modern power systems // Journal of Modern Power Systems and Clean Energy. 2014. Vol. 2. Iss. 4. P. 289–297. https://doi.org/10.1007/s40565-014-0089-4.
- Zakaria A., Ismail F., Hossain M.S., Hannan M.A. Uncertainty models for stochastic optimization in renewable energy applications // Renewable Energy. 2020. Vol. 145. P. 1543–1571. https://doi.org/10.1016/j.renene.2019.07.081.
- Longo S., Montana F., Sanseverino E.R. A review on optimization and cost-optimal methodologies in low-energy buildings design and environmental considerations // Sustainable Cities and Society. 2019. Vol. 45. P. 87–104. https://doi.org/10.1016/j.scs.2018.11.027.
- Алехин Р.А., Кубарьков Ю.П., Замаков Д.В., Умяров Д.В. Обзор метаэвристических методов оптимизации, применяемых при решении электроэнергетических задач // Вестник Самарского государственного технического университета. Серия: Технические науки. 2019. № 3. T. 63. С. 6–19.
- Akbas B., Kocaman A.S., Nock D., Troffer P.A. Rural electrification: аn overview of optimization methods // Renewable and Sustainable Energy Reviews. 2022. Vol. 156. Р. 111935. https://doi.org/10.1016/j.rser.2021.111935.
- Thirunavukkarasu M., Sawle Y., Lala H. A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques // Renewable and Sustainable Energy Reviews. 2023. Vol. 176. P. 113192. https://doi.org/10.1016/j.rser.2023.113192.
- Alabi T.M., Aghimien E.I., Agbajor F.D., Yang Zaiyue, Lu Lin, Adeoye A.R., Gopaluni B. A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems // Renewable Energy. 2022. Vol. 194. P. 822–849. https://doi.org/10.1016/j.renene.2022.05.123.
- Manusov V., Beryozkina S., Nazarov M., Safaraliev M., Zicmane I., Matrenin P. Optimal management of energy consumption in an autonomous power system considering alternative energy sources // Mathematics. 2022. Vol. 10. Iss. 3. P. 525. https://doi.org/10.3390/math10030525.
- Альсова О.К., Артамонова А.В. Многокритериальная модель планирования водно-энергетических режимов Новосибирской ГЭС // Известия Самарского научного центра РАН. 2017. Т. 19. № 6. С. 112–117.
- Woo Jong Ha, Wu Lei, Park Jong-Bae, Roh Jae Hyung. Real-time optimal power flow using twin delayed deep deterministic policy gradient algorithm // IEEE Access. 2020. Vol. 8. P. 213611–213618. https://doi.org/10.1109/ACCESS.2020.3041007.
- Jo Haesung, Park Jaemin, Kim Insu, Haesung Jo. Environmentally constrained optimal dispatch method for combined cooling, heating, and power systems using two-stage optimization // Energies. 2021. Vol. 14. Iss. 14 P. 4135. https://doi.org/10.3390/en14144135.
- Zhang Ning, Hu Zhaoguang, Dai Daihong, Dang Shuping, Yao Mingtao, Zhou Yuhui. Unit commitment model in smart grid environment considering carbon emissions trading // IEEE Transactions on Smart Grid. 2015. Vol. 7. Iss. 1. P. 420– 427. https://doi.org/10.1109/TSG.2015.2401337.
- Hussen K., Koch S., Ulbig A., Andersson G. Energy storage in power system operation: The power nodes modeling framework // IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe). 2010. https://doi.org/10.1109/ISGTEUROPE.2010.5638865.
- Nazari-Heris M., Mohammadi-Ivatloo B., Gharehpetian G.B. A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives // Renewable and Sustainable Energy Reviews. 2018. Vol. 81. P. 2128–2143. https://doi.org/10.1016/j.rser.2017.06.024.
- Поляхов Н.Д., Приходько И.А., Рубцов И.А., Швыров И.В. Оптимизация распределения потоков мощности в энергосистеме с помощью генетических алгоритмов // Современные проблемы науки и образования. 2012. № 3. С. 170. EDN: PAAFDB.
- Park Jaemin, Jo Haesung, Kim Insu. The selection of the most cost-efficient distributed generation type for a combined cooling heat and power system used for metropolitan residential customers // Energies. 2021. Vol. 14. Iss. 18. P. 5606. https://doi.org/10.3390/en14185606.
- Lambora A., Gupta K., Chopra K. Genetic algorithm-A literature review // International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (Faridabad, 14–16 February). Faridabad: IEEE, 2019. P. 380–384. https://doi.org/10.1109/COMITCon.2019.8862255.
- Клер А.М., Корнеева З.Р., Елсуков П.Ю. Оптимизация режимов энергосистем, включающих ТЭЦ и ГЭС, с использованием дерева сочетаний условий функционирования // Вестник Иркутского государственного технического университета. 2010. № 7. С. 170–175.
- Sulaiman M.H., Mustaffa Z. Solving optimal power flow problem with stochastic wind–solar–small hydro power using barnacles mating optimizer // Control Engineering Practice. 2021. Vol. 106. P. 104672. https://doi.org/10.1016/j.conengprac.2020.104672.
- Manusov V.Z., Matrenin P.V., Khasanzoda N. Swarm algorithms in dynamic optimization problem of reactive power compensation units control // International Journal of Electrical & Computer Engineering. 2019. Vol. 9. Iss. 5. P. 3967–3974. https://doi.org/10.11591/ijece.v9i5.pp3967-3974.
- Rabe M., Bilan Yu., Widera K., Vasa L. Application of the linear programming method in the construction of a mathematical model of optimization distributed energy // Energies. 2022. Vol. 15. Iss. 5. P. 1872. https://doi.org/10.3390/en15051872.
- Gbadamosi S.L., Nwulu N.I. Optimal power dispatch and reliability analysis of hybrid CHP-PV-wind systems in farming applications // Sustainability. 2020. Vol. 12. Iss. 19. P. 8199. https://doi.org/10.3390/su12198199.
- Брамм А.М., Хальясмаа А.И., Ерошенко С.А., Матренин П.В., Попкова Н.А., Секацкий Д.А. Оптимизация топологии сети с ВИЭ-генерацией на основе модифицированного адаптированного генетического алгоритма // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2022. Т. 65. № 4. С. 341–354. https://doi.org/10.21122/1029-7448-2022-65-4-341-354.
- Манусов В.З., Матренин П.В., Третьякова Е.С. Оптимизация размещения источников реактивной мощности с помощью алгоритма роя частиц с генетической адаптацией // Промышленная энергетика. 2016. № 8. С. 34–40. EDN: WMRCLZ.
- Manusov V.Z., Matrenin P.V., Ahyoev J.S., Atabaeva L.Sh. Optimization of power distribution networks in megacities // Earth and Environmental Science: IOP Conference Series. 2017. Vol. 72. Iss. 1. P. 012019. https://doi.org/10.1088/17551315/72/1/012019.
- Matrenin P.V., Osgonbaatar T., Sergeev N.N. Overview of renewable energy sources in Mongolia // IEEE International Multi-Conference on Engineering, Computer and Information Sciences. 2022. P. 700–703. https://doi.org/10.1109/SIBIRCON56155.2022.10016986.
- Osgonbaatar T., Matrenin P., Safaraliev M., Zicmane I., Rusina A., Kokin S. A rank analysis and ensemble machine learning model for load forecasting in the nodes of the central Mongolian power system // Inventions. 2023. Vol. 8. Iss. 5. P. 114. https://doi.org/10.3390/inventions8050114.
Supplementary files


