Improving decomposition efficiency of aluminate liquor through preparation and introduction of active seed during the decomposition process

Cover Page

Cite item

Full Text

Abstract

The aim is to determine the optimal parameters for the preparation and dosing of active seeding (finely dispersed aluminium hydroxide) to control the decomposition of aluminate liquor in the Bayer process. Laboratory tests were carried out on a temperature-controlled rotating water bath (Intronics, Australia). The granulometric analysis of the obtained aluminium hydroxide was carried out using the VideoTest image analysis system and a Carl Zeiss Axioskop-40 microscope (Germany) supplemented with Image Analysis software. Finely dispersed aluminium hydroxide (active seed) was obtained by mixing an alkaline aluminate solution and recycled water in various ratios. The filling order of solutions was determined – first, recycled water, followed by cooled alkaline aluminate solution. Optimal conditions for the preparation of active seeding were established: the solution was held for 48–72 hours at 50°C at an aluminate solution to recycle water ratio of 60% and 40%, respectively. The dosing of the obtained active seeding into the head decomposers was examined. It was demonstrated that using active seeding in continuous decomposition mode stabilises the particle-size distribution of the production-grade aluminium hydroxide. The presence of active seeding allowed the initial decomposition temperature to be reduced from 62°C to 58°C without altering the particle-size distribution of aluminium hydroxide. In addition, the study confirmed the positive effect of active seeding on increasing the degree of decomposition of the aluminate liquor up to 1.5%. Therefore, based on the research results, it was established that the use of the new method for preparing and dosing active seeding into the main decomposers leads to the intensification of the decomposition process in alumina production.

About the authors

K. D. Alekseev

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: kostya.alekseev94@mail.ru

I. V. Loginova

Ural Federal University named after the first President of Russia B.N. Yeltsin

Email: i.v.loginova@urfu.ru
ORCID iD: 0000-0002-1627-4634

I. E. Chetyrkin

RUSAL ETC

Email: Igor.Chetyrkin@rusal.com

I. S. Gostinskaya

RUSAL ETC

Email: Irina.Gostinskaya@rusal.com

References

  1. Александров А.В., Немчинова Н.В. Расчет ожидаемой экономичеcкой эффективности производства алюминия за счет увеличения применения глинозема отечественного производства // Вестник Иркутского государственного технического университета. 2020. Т. 24. № 2. С. 408–450. https://doi.org/10.21285/1814-3520-2020-2-408-420.
  2. Немчинова Н.В., Тютрин А.А., Бараускас А.Э. Анализ химического состава техногенных материалов производства первичного алюминия для поиска рациональных методов их переработки // Цветные металлы. 2019. № 12. С. 22–29. https://doi.org/10.17580/tsm.2019.12.03.
  3. Торопов Е.В., Макаров Д.П. Комплексное управление энерго- и ресурсосбережением металлургического производства: сб. тр. Междунар. науч.-техн. конф. (г. Екатеринбург, январь 2003 г.). Екатеринбург, 2003. С. 258–261.
  4. Логинова И.В., Лоскутова А.И. Способ комплексной переработки высококремнистых бокситов // Инновации в материаловедении и металлургии: матер. III Междунар. интерактивной науч.-практ. конф. (г. Екатеринбург, 17–21 декабря 2013 г.). Екатеринбург: УрФУ, 2013. С. 59–61.
  5. Aghazardeh V., Shayanfar S. Decomposition of aluminate solution for aluminum hydroxide precipitation by carbonation: a thermodynamic and experimental studies // Journal of Chemical Technology and Metallurgy. 2021. P. 149–160.
  6. Stephenson J.L., Kapraun C. Dynamic modeling of yield and particle size distribution in continuous Bayer precipitation // Essential Readings in Light Metals / eds. D. Donaldson, B.E. Raahauge. Cham: Springer, 2016. Р. 891–897. https://doi.org/10.1007/978-3-319-48176-0_123.
  7. Shoppert A., Valeev D., Alekseev K., Loginova I. Enhanced precipitation of gibbsite from sodium aluminate solution by adding agglomerated active Al(OH)3 seed // Metals. 2023. Vol. 13. Iss. 2. P. 193. https://doi.org/10.3390/met13020193.
  8. Liu Guihua, Wu Guoyu, Chen Wei, Li Xiao-bin, Peng Zhihong, Zhou Qiusheng, et al. Increasing precipitation rate from sodium aluminate solution by adding active seed and ammonia // Hydrometallurgy. 2018. Vol. 176. P. 253–259. https://doi.org/10.1016/j.hydromet.2018.02.003.
  9. Gai Wei-Zhuo, Zhang Shi-Hu, Yang Yang, Sun Kexi, Jia Hong, Deng Zhen-Yan. Defluoridation performance comparison of aluminum hydroxides with different crystalline phases // Water Science and Technology Water Supply. 2022. Vol. 22. Iss. 4. P. 3673–3684. https://doi.org/10.2166/ws.2022.012
  10. Gai Wei-Zhuo, Zhang Xianghui, Yang Yang, Deng Zhen-Yan. Effect of crystalline phases of aluminum hydroxide catalysts on Al-water reaction // International Journal of Energy Research. 2020. Vol. 44. Iss. 6. 4969–4976. https://doi.org/10.1002/er.5238.
  11. Zhang Baiyong, Pan Xiaolin, Yu Haiyan, Tu Ganfeng, Bi Shiwen. Effect of organic impurity on seed precipitation in sodium aluminate solution // Light Metals. The Minerals, Metals & Materials Series / eds. O. Martin. Cham: Springer, 2018. P. 41–47. https://doi.org/10.1007/978-3-319-72284-9_7.
  12. Dash B., Tripathy B.C., Bhattacharya I.N., Das S.C., Mishra C.R., Mishra B.K. Precipitation of boehmite in sodium aluminate liquor // Hydrometallurgy. 2009. Vol. 95. Iss. 3-4. P. 297–301. https://doi.org/10.1016/j.hydromet.2008.07.002.
  13. Лайнер А.И. Производство глинозема. М.: Металлургиздат, 1961. 619 с.
  14. Pan Zhaoshuai, Zhang Zhaozhi, Che Dong. Exploring primary aluminum consumption: new perspectives from hybrid CEEMDAN-S-Curve model // Sustainability. 2023. Vol. 15. Iss. 5. Р. 4228. https://doi.org/10.3390/su15054228.
  15. Dubovikov O.A., Brichkin B.N., Ris A.D., Sundurov A.V. Thermochemical activation of hydrated aluminosili-cates and its importance for alumina // Non-ferrous metals. 2018. No. 2. P. 11–16. https://doi.org/10.17580/nfm.2018.02.02.
  16. Сибирзянов Н.А., Яценко С.П. Гидрохимические способы комплексной переработки боксита. Екатеринбург: Уро РАН, 2006. 386 с.
  17. Мазель В.А. Производство глинозема. М.: Металлургиздат, 1955. 430 с.
  18. Андреев П.И., Шавло Р.А. Обжиг-магнитное обогащение гематит-бемитовых бокситов // Цветные металлы. 1973. № 7. 92–93.
  19. Савченко А.И., Савченко К.Н. Декомпозиция и повышение качества гидроксида алюминия. Краснотурьинск: ОАО «БАЗ», 1999. 156 c.
  20. Минцис М.Я., Николаев И.В., Сиразутдинов Г.А. Производство глинозема. Новосибирск: Наука, 2012. 252 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).