Sample geometry transformation for mechanical tests of constructional materials in an FDM structure

Cover Page

Cite item

Full Text

Abstract

The aim was to obtain a rough determination of the dimensions and shape of a sample for an experimental study of the mechanical characteristics of filamentary FDM-printing structures with a low filling at central tension. The sample geometry was designed based on the dimensions and shape provided in the GOST 17370-2017 “Cellular rigid plastics. Tension testing method”. The research methods included the finite element analysis of stress state parameters in an automated environment, elements of the stiffened shell theory and experimental testing of samples. The theory of stiffened shells was used to simplify the geometry of the finite element model for the studied samples. Finite element analysis was carried out in a linear formulation and, based on the results of its combination with the analysis of the technological model of a designed sample, a decision on transforming the sample geometry was made. The samples were produced using a “line” template with an orientation along the longitudinal axis of the sample. According to the results of testing the samples, a conclusion about the success of implied transformation was made. The success criterion involves the destruction of an FDM sample within the limits of the working part. As a result, both external and internal geometries of the prototype sample were transformed. This allowed the main emphasis in the work of the stretchable FDM sample to be shifted to its working part and the trajectory of power flows to be adjusted according to the FDM-printing specifics. Experimental testing of FDM samples with a low “line” template filling showed a consistently satisfactory result: fractures occurred in the working part of test samples. In the course of the studies, the general trend in the dependence of the force flow distribution over the sample volume on the combination of the printing thread trajectory with external and internal geometries of the sample was determined. Future work will focus on a more detailed analysis and formalisation of the obtained results with regard to various printing templates.

About the authors

L. I. Shemetov

Irkutsk National Research Technical University

Email: vbr2604@mail.ru
ORCID iD: 0000-0001-5955-6714

V. B. Raspopina

Irkutsk National Research Technical University

Email: vbr2604@mail.ru
ORCID iD: 0000-0001-8960-5644

A. S. Chernyshkov

Irkutsk National Research Technical University

Email: vbr2604@mail.ru
ORCID iD: 0000-0001-9128-0738

References

  1. Nath S. D., Nilufar S. An Overview of additive manufacturing of polymers and associated composites // Polymers. 2020. Vol. 12. Iss. 11. Р. 2719. https://doi.org/10.3390/polym12112719.
  2. Петрова Г. Н., Ларионов С. А., Сорокин А. Е., Сапего Ю. А. Современные способы переработки термопластов // Труды ВИАМ. 2017. № 11. https://doi.org/10.18577/2307-6046-2017-0-11-7-7.
  3. Weng Zixiang, Wang Jianlei, Senthil T., Wu Lixin. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing // Materials & Design. 2016. Vol. 102. Р. 276–283. https://doi.org/10.1016/j.matdes.2016.04.045.
  4. Divyathej M. V., Varun M., Rajeev P. Analysis of mechanical behavior of 3D printed ABS parts by experiments // International Journal of Scientific & Engineering Research. 2016. Vol. 7. Iss. 3. P. 116–124.
  5. Сабсай О. Ю., Чалая Н. М. Технологические свойства термопластов (обзор) // Пластические массы. 1992. № 1. С. 5–13.
  6. Hanaphy P. 3D Printing industry news sliced: Velo3D, Xerox, Weta Workshop, MyMiniFactory and more. URL: https://3dprintingindustry.com/news/3d-printing-industrynews-sliced-velo3d-xerox-weta-workshop-myminifactoryand-more-213448/ (08.02.2022).
  7. Попадюк С. От протезов до оснастки: 3D-печать термопластами и композитами на их основе. URL: https://blog.iqb.ru/rec-thermoplasticscomposites/?utm_source=getresponse&utm_medium=email (08.02.2022).
  8. Raspopina V., Perelygina A., Shemetov L., Grigorov P. Dependence between the mechanical characteristics of the material and the FDM sample made from this material // Safety in Aviation and Space Technologies. Lecture Notes in Mechanical Engineering / eds. A. Bieliatynskyi, V. Breskich. Cham: Springer, 2022. Р. 215–227. https://doi.org/10.1007/978-3-030-85057-9_18.
  9. Anitha R., Arunachalam S., Radhakrishnan P. Critical parameters influencing the quality of prototypes in fused deposition modelling // Journal of Materials Processing Technology. 2001. Vol. 118. Iss. 1-3. Р. 385–388. https://doi.org/10.1016/S0924-0136(01)00980-3.
  10. Варнавский А. Н., Гадельшин А. Р., Салин Д. С. Исследование влияния показателей печати на качество и соотношение цена/качество результата изготовления изделий на бюджетном 3d-принтере // Вестник Белгородского государственного технологического университета им. В. Г. Шухова. 2018. Т. 3. № 12. С. 124–131. https://doi.org/10.12737/article_5c1c9969a10128.83957539.
  11. Sood А. K., Ohdar R. K., Mahapatra S. S. Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method // Materials & Design. 2009. Vol. 30. Iss. 10. Р. 4243–4252. https://doi.org/10.1016/j.matdes.2009.04.030.
  12. Кузьмин А. А., Яблокова М. А. Выбор допускаемых напряжений при расчете на прочность деталей из пластмасс // Современные наукоемкие технологии. 2016. № 8-2. С. 242–246.
  13. Cantrell J., Rohde S., Damiani D., Gurnani R., DiSandro L., Anton J., et al. Experimental characterization of the mechanical properties of 3D printed ABS and polycarbonate parts // Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series / eds. S. Yoshida, L. Lamberti, C. Sciammarella. Cham: Springer, 2017. Vol. 3. P. 89–105. https://doi.org/10.1007/978-3-319-41600-7_11.
  14. Tronvoll S. A., Welo T., Elverum C. W. The effects of voids on structural properties of fused deposition modelled parts: a probabilistic approach // The International Journal of Advanced Manufacturing Technology. 2018. Vol. 97. P. 3607–3618. https://doi.org/10.1007/s00170-018-2148-x.
  15. Kovan V., Tezel T., Camurlu H. E., Topal E. S. Effect of printing parameters on mechanical properties of 3D printed PLA/carbon fibre compos // Materials Science. Non-Equilibrium Phase Transformations. 2018. Iss. 4. P. 126–128.
  16. Yoojung Han, Jongjun Kim. A Study on the mechanical properties of knit fabric using 3D printing - focused on PLA, TPU Filament- // Journal of Fashion Business. 2018. Vol. 22. Iss. 4. P. 93–105. https://doi.org/10.12940/jfb.2018.22.4.93.
  17. Wu Wenzheng, Ye Wenli, Geng Peng, Wang Yulei, Li Guiwei, Hu Xue, et al. 3D printing of thermoplastic PI and interlayer bonding evaluation // Materials Letters. 2018. Vol. 229. P. 206–209. https://doi.org/10.1016/j.matlet.2018.07.020.
  18. Wu Wenzheng, Geng Peng, Li Guiwei, Zhao Di, Zhang Haibo, Zhao Ji. Influence of layer thickness and raster angle on the mechanical properties of 3D-Printed PEEK and a comparative mechanical study between PEEK and ABS // Materials. 2015. Vol. 8. Iss. 9. P. 5834–5846. https://doi.org/10.3390/ma8095271.
  19. Huynh Nha Uyen, Smilo Jordan, Blourchian Aryan, Karapetian A. V., Youssef G. Property-map of epoxy-treated and as-printed polymeric additively manufactured materials // International Journal of Mechanical Sciences. 2020. Vol. 181. Р. 105767. https://doi.org/10.1016/j.ijmecsci.2020.105767.
  20. Avdeev A, Shvets A, Gushchin I, Torubarov I, Drobotov A, Makarov A, et al. Strength increasing additive manufacturing fused filament fabrication technology, based on spiral toolpath material deposition // Machines. 2019. Vol. 7. Iss. 3. Р. 57. https://doi.org/10.3390/machines7030057.
  21. Петров В. М., Безпальчук С. Н., Яковлев С. П. О влиянии структуры на прочность изделий из пластиков, получаемых методом 3D-печати // Вестник Государственного университета и речного флота им. адмирала С. О. Макарова. 2017. Т. 9. № 4. С. 765–776. https://doi.org/1021821/2309-5180-2017-9-4-765-776.
  22. Ni Fei, Wang Guangchun, Zhao Haibin. Fabrication of water-soluble poly(vinyl alcohol)-based composites with improved thermal behavior for potential three-dimensional printing application // Journal of Applied Polymer Science. 2017. Vol. 134. Iss. 24. https://doi.org/10.1002/app.44966.
  23. Фролов Д. А., Гаврилова А. О., Распопина В. Б. Численный эксперимент: анализ напряженного состояния в характерных точках FDM-структуры // Безопасность колесных транспортных средств в условиях эксплуатации: материалы CX Международной научнотехнической конференции (г. Иркутск, 2–4 июня 2021 г.). Иркутск: Изд-во ИРНИТУ, 2021. С. 160–167.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).