Automatic tuning of frequency and interchange power controllers in low-power energy systems

Cover Page

Cite item

Full Text

Abstract

The present work discusses the development of algorithms for power controller autotuning under normal operation in power units of local energy systems having low synchronous generation, which can operate in stand-alone and parallel mode with the external power grid. The power controller of a power unit is tuned in the course of routine operation following the quality indicators of recorded transients under several load commutations upon a varying amplification factor. The amplification factor for each control channel is optimised by a function that approximates the dependence of the transient characteristics on the value of this factor, including the diversity of processes and mode disturbances during power surge/shedding. The sum of weighted overshoot and process duration values is used as a process quality indicator. Owing to adaptation, the controller automatically tunes itself over time, and the control quality improves. This article presents algorithms for autotuning the power controller when regulating frequency and interchange overcurrent under isolated and parallel operation mode of the MiniGrid, respectively. Unlike frequency controller, when the interchange overcurrent controller is autotuned by transient functions associated with load commutations, the algorithm filters out high-frequency power variations resulting from electromechanical oscillations. The simulation results of autotuning the power controller for an elementary scheme, having one generator, confirm the efficiency of the presented method and algorithms. The proposed method of autotuning frequency and interchange overcurrent controllers appears promising for technological enhancement and use in MiniGrid power control systems.

About the authors

A. G. Fishov

Novosibirsk State University

Email: fishov@ngs.ru
ORCID iD: 0000-0002-5712-064X

A. A. Osintsev

Novosibirsk State University

Email: osincev@corp.nstu.ru
ORCID iD: 0000-0001-8373-3493

M. Yu. Frolov

Novosibirsk State University

Email: myu.frolov@gmail.com
ORCID iD: 0000-0003-4408-0316

D. A. Armeev

Novosibirsk State University

Email: armeevdv@yandex.ru
ORCID iD: 0000-0002-2128-9590

I. S. Murashkina

Novosibirsk State University

Email: murashkinainna@yandex.ru
ORCID iD: 0000-0002-0124-1071

References

  1. Chen Liuyang, Chen Qing, Zhang Zhiming, Xie Ranran. Cable fault characteristics of energy storage in DC microgrids // 5th Asia Conference on Power and Electrical Engineering. 2020. https://doi.org/10.1109/ACPEE48638. 2020.9136207.
  2. Zhou Xuesong, Guo Tie, Ma Youjie. An overview on microgrid technology // International Conference on Mechatronics and Automation (Beijing, 2–5 August 2015). Beijing: IEEE, 2015. P. 76–81. https://doi.org/10.1109/ICMA.2015.7237460.
  3. Баринов В. А. Перспективы развития электроэнергетики России на период до 2030 г. // Анализ и прогноз. Журнал ИМЭМО РАН. 2010. № 3. С. 13–20.
  4. Коломыцев В. Г., Рустамханова Г. И. Модификация временного метода Зиглера–Никольса и оптимизация параметров ПИД-регуляторов средствами Matlab // Фундаментальные исследования. 2016. № 11-3. С. 526–531.
  5. Фишов А. Г., Ивкин Е. С., Гилев О. В., Какоша Ю. В. Режимы и автоматика Минигрид, работающих в составе распределительных электрических сетей ЕЭС // Релейная защита и автоматизация. 2021. № 3. С. 22–37.
  6. Пат. № 2065067, Российская Федерация, F02D 31/00. Устройство для настройки регулятора частоты вращения дизель генератора / Б. А. Усик, В. Ф. Терехов; заявитель и патентообладатель Серпуховское высшее военное командно-инженерное училище ракетных войск. Заявл. 30.07.1991; опубл. 10.08.1996.
  7. Пат. № 2714567, Российская Федерация, G05B 13/00. Способ автоматической настройки регулятора / С. В. Тарарыкин, А. А. Анисимов, А. И. Терехов, К. Е. Соколов; заявитель и патентообладатель Ивановский государственный энергетический университет им. В. И Ленина. Заявл. 06.05.2019; опубл. 18.02.2020.
  8. Datta A., Konar S., Singa L. J., Singh K. M., Lalfakzuala A. A study on load frequency control for a hybrid power plant // Second International Conference on Electrical, Computer and Communication Technologies. 2017. https://doi.org/10.1109/ICECCT.2017.8117975.
  9. Shaker H. K., Zoghby H. E., Bahgat M. E., Abdel Ghany A. M. Advanced control techniques for an interconnected multi area power system for load frequency control // 21st International Middle East Power Systems Conference (Cairo, 17–19 December 2019). Cairo: IEEE, 2019. P. 710–715. https://doi.org/10.1109/MEPCON47431.2019.9008158.
  10. Karimi H., Beheshti M. T. H., Ramezani A. Decentralized voltage and frequency control in an autonomous ac microgrid using gain scheduling tuning approach // 24th Iranian Conference on Electrical Engineering (Shiraz, 10– 12 May 2016). Shiraz: IEEE, 2016. P. 1597–1602. https://doi.org/10.1109/IranianCEE.2016.7585776.
  11. Satapathy P., Debnath M. K., Singh M. B., Mohanty P. K. Design of FPI controller for load frequency control of a nonlinear power system // Technologies for Smart-City Energy Security and Power. 2018. https://doi.org/10.1109/ICSESP.2018.8376681.
  12. Abubakr H., Mohamed T. H., Hussein M. M., Shabib G. ESO-based selftuning frequency control design for isolated microgrid system // 21st International Middle East Power Systems Conference (Cairo, 17–19 December 2019). Cairo: IEEE, 2019. P. 589–593. https://doi.org/10.1109/MEPCON47431.2019.9008042.
  13. Tripathy S., Debnath M. K., Kar S. K. Jaya algorithm tuned FO-PID controller with first order filter for optimum frequency control // 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology. 2021. https://doi.org/10.1109/ODICON50556.2021.9428959.
  14. Patel N. C., Debnath M. K., Bagarty D. P., Das P. Load frequency control of a non-linear power system with optimal PID controller with derivative filter // IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (Chennai, 21–22 September 2017). Chennai: IEEE, 2017. P. 1515–1520. https://doi.org/10.1109/ICPCSI.2017.8391964.
  15. Mishra S., Nayak P. C., Prusty U. C., Prusty R. C. Model predictive controller based load frequency control of isolated microgrid system integrated to plugged-in electric vehicle // 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology. 2021. https://doi.org/10.1109/ODICON50556.2021.9428956.
  16. Zaidi A., Cheng Qi. Online and offline load frequency controller design // IEEE Texas Power and Energy Conference. 2017. https://doi.org/10.1109/TPEC.2017.7868283.
  17. Mohamed T. H., Hussein M. M. Online gain tuning of conventional load frequency controller for Microgrid power system // Twentieth International Middle East Power Systems Conference (Cairo, 18–20 December 2018). Cairo: IEEE, 2018. Р. 424–428. https://doi.org/10.1109/MEPCON.2018.8635107.
  18. Ali M., Djalal M. R., Fakhrurozi M., Kadaryono, Budiman. Optimal design capacitive energy storage (CES) for load frequency control in micro hydro power plant using flower pollination algorithm // Electrical Power, Electronics, Communications, Controls and Informatics Seminar (Batu, 9–11 October 2018). Batu: IEEE, 2018. P. 21–26. https://doi.org/10.1109/EECCIS.2018.8692997.
  19. Седойкин Д. Н., Юрганов А. А. Адаптивный автоматический регулятор возбуждения на основе нечеткого аппроксиматора в режиме недовозбуждения синхронной машины // Научно-технические ведомости Санкт-Петербургского политехнического университета. Серия: Естественные и инженерные науки. 2018. Т. 24. № 2. С. 22–29. https://doi.org/10.18721/JEST.240202.
  20. Булатов Ю. Н., Игнатьев И. В., Попик В. А. Методика выбора оптимальных настроек систем АРЧВ генераторов электростанций // Современные технологии. Системный анализ. Моделирование. 2011. № 1. С. 192–198.
  21. Булатов Ю. Н., Крюков А. В., Чан Зюй Хынг. Интеллектуальные регуляторы для установок распределенной генерации // Современные технологии. Системный анализ. Моделирование. 2015. № 2. С. 83–95.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).