A classification of energy forms according to the levels of organization of matter

Cover Page

Cite item

Full Text

Abstract

The study investigates mechanical, thermal, chemical, electromagnetic, and nuclear types of energy from the standpoint of organization of matter in order to establish a connection between them. In this regard, a calculation and comparison of the energy potentials for various levels of matter organization were performed. For mechanical energy, the potential energy and the energy of a steel disk at a rotation frequency of 100,000 rpm were considered. The potential of thermal energy was discussed using the example of a steel sample heated from 20 to 1,400C. For chemical energy, the most common combustible element in technology – carbon – was considered. The energy potential of electromagnetic energy was estimated by determining the total charge of all electrons in 1 kg of iron. For nuclear energy, a calculation of the energy released during the decay of 1 kg of U235 was carried out. A dependence of the energy potential degree on the level of matter organization was established. The possibility of using the energy potential of the next level of matter organization was considered. Patterns of the levels of matter organization were revealed. Despite the fundamental nature of the material presented in this article, it is aimed at a specific practical application in a device developed as part of a doctoral dissertation by one of the authors on the topic “Cogeneration thermal and power complex combining the principles of energy transformation”. A classification of energy forms in accordance with the levels of matter organization was carried out in the framework of identifying the general principles and patterns of using low-potential sources of various energy forms. This classification allows a new thermal transformer and a thermal and power complex to be created. The initial theoretical studies carried out by the authors will subsequently form a basis for the creation of various energy transformers capable of operating with several types of energy in one device.

About the authors

V. V. Papin

Platov South-Russian State Polytechnic University

Email: vladimir_papin@bk.ru
ORCID iD: 0000-0002-3277-9413

N. N. Efimov

Platov South-Russian State Polytechnic University

Email: efimovnn40@mail.ru
ORCID iD: 0000-0002-5010-6773

E. M. Dyakonov

Platov South-Russian State Polytechnic University

Email: emdyakonov@yandex.ru
ORCID iD: 0000-0002-0289-2976

R. V. Bezuglov

Platov South-Russian State Polytechnic University

Email: bezuglov@npi-tu.ru
ORCID iD: 0000-0001-7142-5207

D. V. Dobrydnev

Platov South-Russian State Polytechnic University

Email: d.v.dobrydnev@gmail.com
ORCID iD: 0000-0002-4702-6211

А. S. Shmakov

Platov South-Russian State Polytechnic University

Email: tolikshmakov.1998@rambler.ru
ORCID iD: 0000-0002-2260-8389

References

  1. Li Tao, Yao Shuai, He Limin, Yu Xiyun, Shan Siwei. Compositional study of household ceramic assemblages from a Late Neolithic (5300-4500 cal BP) earthen walled town in the middle Yangtze River valley of China // Journal of Archaeological Science: Reports. 2021. Vol. 39. Р. 103159. https://doi.org/10.1016/j.jasrep.2021.103159.
  2. Ardren T., Miller S. Household garden plant agency in the creation of Classic Maya social identities // Journal of Anthropological Archaeology. 2020. Vol. 60. Р. 101212. https://doi.org/10.1016/j.jaa.2020.101212.
  3. Amirante R., Cassone Е., Distaso Е., Tamburrano P. Overview on recent developments in energy storage: mechanical, electrochemical and hydrogen technologies // Energy Conversion and Management. 2017. Vol. 132. P. 372–387. https://doi.org/10.1016/j.enconman.2016.11.046.
  4. Congedo Р. M., Baglivo С., Carrieri L. Hypothesis of thermal and mechanical energy storage with unconventional methods // Energy Conversion and Management. 2020. Vol. 218. P. 372–387. https://doi.org/10.1016/j.enconman.2020.113014.
  5. Maamer В., Boughamoura А., Fath El-Bab A. M. R., Francis L. A., Tounsi F. A review on design improvements and techniques for mechanical energy harvesting using piezoelectric and electromagnetic schemes // Energy Conversion and Management. 2019. Vol. 199. Р. 111973. https://doi.org/10.1016/j.enconman.2019.111973.
  6. Singh K. K., Singh R. Process mechanics based uncertainty modeling for cutting force prediction in high speed micromilling of Ti6Al4V // Procedia Manufacturing. 2020. Vol. 48. P. 273–282. https://doi.org/10.1016/j.promfg.2020.05.048.
  7. Bezuglov R., Papin V., Dyakonov E., Veselovskaya E., Filimonov V. waste co-combustion with a conventional fossil fuel on power plants // Mechanical Engineering and Materials Science: MATEC Web of Conferences. 2020. Vol. 329. Р. 03081. https://doi.org/10.1051/matecconf/202032903081.
  8. Efimov N. N., Parshukov V. I., Kopitsa V. V., Papin V. V., Bezuglov R. V., Lagutin A. Y. Studying possibilities of seasonal cold for application in multifunctional heat supply units // Journal of Engineering and Applied Sciences. 2018. Vol. 13. Iss. 7. P. 2623–2631.
  9. Shaposhnikov V. V., Biryukov B. V. Increasing efficiency of CCP-based TPP with injection of dry saturated steam from recovery boiler into regenerator // Journal of physics: Conference series. 2017. No. 891. Р. 012185. https://doi.org/10.1088/1742-6596/891/1/012185.
  10. Shaposhnikov V. V., Dyakonov E. M., Mihalko Ya. O., Batko D. N. Study of TGM-94 boiler with variable feed water temperature using a calculation model // Materials Science and Engineering: IOP Conference Series. 2020. Vol. 862. Iss. 6. Р. 062096. https://doi.org/10.1088/1757899X/862/6/062096.
  11. Боровков В. М., Зысин Л. В., Сергеев В. В. Технологии энергетического использования растительной биомассы и органосодержащих отходов в энергетике // Известия Российской академии наук. Энергетика. 2002. № 6. С. 13–24.
  12. Зысин Л. В., Кошкин Н. Л., Орлов Е. И., Сергеев В. В., Стешенков Л. П. Исследование совместной работы дизеля и газогенератора, перерабатывающего растительную биомассу // Теплоэнергетика. 2002. Т. 49. № 1. С. 14–19.
  13. Cramer C. J., Truhlar D. G. Density functional theory for transition metals and transition metal chemistry // Physical Chemistry Chemical Physics. 2009. Iss. 46. Р. 10757–10816. https://doi.org/10.1039/B907148B.
  14. Hapka M., Żuchowski P. S. Interactions of atoms and molecules in cold chemistry // Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero. 2017. Vol. 5. P. 203–275. https://doi.org/10.1039/978178262680000203.
  15. Ротинян А. Л., Филатов В. П., Цибизов Г. В. Оптимизация производства хлора (диафрагменный метод). М.: Химия, 1980. 272 с.
  16. Gür T. M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage // Energy & Environmental Science. 2018. Iss. 10. Р. 2696–2767. https://doi.org/10.1039/C8EE01419A.
  17. Contino F., Moret S., Limpens G., Jeanmart H. Whole-energy system models: the advisors for the energy transition // Progress in Energy and Combustion Science. 2020. Vol. 81. Р. 100872. https://doi.org/10.1016/j.pecs.2020.100872.
  18. Niaz M. Mendeleev and the periodic table: a response to Scerri // Educación Química. 2013. Vol. 24. Iss. 3. P. 285-287. https://doi.org/10.1016/S0187-893X(13)72477-7.
  19. Zhu Can, Yuan Jun, Cai, Fangfang, Meng Lei, Zhang Huotian, Chen Honggang. Tuning the electrondeficient core of a non-fullerene acceptor to achieve over 17% efficiency in a single-junction organic solar cell // Energy & Environmental Science. 2020. Iss.13. P. 2459–2466. https://doi.org/10.1039/D0EE00862A.
  20. Tabatabaei M., Aghbashlo M., Dehhaghi M., Panahi H. K. S., Mollahosseini A., Hosseini М., et al. Reactor technologies for biodiesel production and processing: A review // Progress in Energy and Combustion Science. 2019. Vol. 74. P. 239–303. https://doi.org/10.1016/j.pecs.2019.06.001.
  21. Lee Yong Deok, Ahn Seong-Kyu, Choi Woo-Seok. Sensitivity simulation on isotopic fissile measurement using neutron resonances // Nuclear Engineering and Technology. 2021. https://doi.org/10.1016/j.net.2021.08.017

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).