Evaluation of the stressed state of cutting elements of coated end-milling hard-alloy combined cutters
- Authors: Mokritskii B.Y.1, Vereshchagin V.Y.2
-
Affiliations:
- Komsomolsk-na-Amure State University
- Novosibirsk State Pedagogical University
- Issue: Vol 25, No 4 (2021)
- Pages: 421-434
- Section: Mechanical Engineering and Machine Science
- URL: https://journals.rcsi.science/2782-4004/article/view/382279
- DOI: https://doi.org/10.21285/1814-3520-2021-4-421-434
- ID: 382279
Cite item
Full Text
Abstract
This paper compares stresses arising in the tool material of combined end-milling cutters and their admissible values with the purpose of preventing cutter destruction. The limit stress values of tool materials for the developed endmilling hard-alloy combined cutters having an interfaced cutting part and tailpiece were investigated. The cutting part was made of a tool-grade hard alloy, and the tailpiece was made of structural steel. To determine stresses, simulation modelling was carried out in the ANSYS and Deform software. The cutting force components were found experimentally. It was assumed that lower cutting force components lead to lower stresses in the tool material. This results in a lower probability of tool material destruction. The process of cutting the hard-to-cut stainless steel 12Kh18N10T was considered at the following parameters: a cutting speed of 70 m/min, a cutting depth of 1 mm, and a feeding of 0.1 mm/tooth. The tool material VK8 with no coating and with various coatings promoting the reduction of cutting force components was studied. It was confirmed that a combined end-milling cutter 16 mm in diameter and 92 mm long can be used to cut parts with the same accuracy as using a solid end-milling hard-alloy cutter. An increase in the length of combined cutters decreases the cutting accuracy; however, for lengths 123 and 180 mm, these cutters can be used to manufacture parts applied in general machine building. Therefore, combined end-milling cutters can compete with solid cutters in terms of the manufacturing accuracy and resilience period, which limits the existing applicability of solid cutters. The cost of combined cutters is 10–60% lower than that of solid cutters.
About the authors
B. Ya. Mokritskii
Komsomolsk-na-Amure State University
Email: boris@knastu.ru
V. Yu. Vereshchagin
Novosibirsk State Pedagogical University
Email: klirickv@yandex.ru
References
- Мокрицкий Б.Я., Верещагина А.С., Верещагин В.Ю. Моделирование напряжений и деформации твердосплавных концевых фрез // Ученые записки Комсомольского-на-Амуре государственного университета. Серия: Науки о природе и технике. 2016. № 1. С. 82–87.
- Верещагин В.Ю., Мокрицкий Б.Я., Верещагина А.С. Прогнозное моделирование архитектуры покрытия на металлорежущем инструменте // Упрочняющие технологии и покрытия. 2018. Т. 14. № 4. С. 147–156.
- Мокрицкий Б.Я., Пустовалов Д.А., Саблин П.А., Коннова Г.В., Кравченко Е.Г. Параметрические исследования составных твердосплавных концевых фрез // Металлообработка. 2015. № 6. С. 23–29.
- Подойницын М.А., Мокрицкий Б.Я., Морозова А.В., Мокрицкая Е.Б. Совершенствование твердосплавной концевой составной фрезы // Вестник Брянского государственного технического университета. 2017. № 1. С. 50–57. https://doi.org/10.12737/24892
- Мокрицкий Б.Я., Пустовалов Д.А., Кваша В.Ю., Артѐменко А.А., Кравченко Е.Г. Совершенствование твердосплавных концевых фрез // Проблемы машиностроения и автоматизации. 2016. № 1. С. 49–54.
- Totten G.E., Xie Lin, Funatani K. Modeling and Simulation for Material Selection and Mechanical Design. New York, 2004. 880 р. https://doi.org/10.1201/9780203913451
- Vereschaka A., Oganyan M., Bublikov Yu., Sitnikov N., Deev K., Pupchin V. Increase in efficiency of end milling of titanium alloys due to tools with multilayered composite nano-structured Zr-ZrN-(Zr,Al)N and Zr-ZrN-(Zr,Cr,Al)N coatings // Coating. 2018. Vol. 8. Iss. 11. Р. 395. https://doi.org/10.3390/coatings8110395
- Vereschaka A.A., Vereshchagin V.Y., Sitnikov N.N., Oganyan G.V., Aksenenko A.Yu. Study of mechanism of failure and wear of multi-layered composite nanostructured coating based on system Ti-TiN-(ZrNbTi)N deposited on carbide substrates // Journal of Nano Research. 2017. Vol. 45. P. 110–123. https://doi.org/10.4028/www.scientific.net/JNanoR.45.110
- Özel T., Altan T. Determination of workpiece flow stress and friction at the chip–tool contact for high-speed cutting // International Journal of Machine Tools and Manufacture. 2000. Vol. 40. Iss. 1. Р. 133–152. https://doi.org/10.1016/S0890-6955(99)00051-6
- Fox-Rabinovich G.S., Yamomoto K., Veldhuis S.C., Kovalev A.I., Dosbaeva G.K. Tribological adaptability of TiAlCrN PVD coatings under high performance dry machining conditions // Surface and Coatings Technology. 2005. Vol. 200. Iss. 5–6. P. 1804–1813. https://doi.org/10.1016/j.surfcoat.2005.08.057
- Erkens G., Cremer R., Hamoudi T., Bouzakis K.-D., Mirisidiset I., Hadjiyiannis S., et al. Properties and performance of high aluminum containing (Ti, Al)N based supernitride coatings in innovative cutting applications // Surface and Coatings Technology. 2004. Vol. 177-178. P. 727–734. https://doi.org/10.1016/j.surfcoat.2003.08.013
- Zhang Hua, Deng Zhaohui, Fu Yahui, Lv Lishu, Yan Can. A process parameters optimization method of multi-pass dry milling for high efficiency, low energy and low carbon emissions // Journal of Cleaner Production. 2017. Vol. 148. P. 174–184. https://doi.org/10.1016/j.jclepro.2017.01.077
- Huang Weijian, Li Xi, Wang Boxing, Chen Jihong, Zhou Ji. An analytical index relating cutting force to axial depth of cut for cylindrical end mills // International Journal of Machine Tools and Manufacture. 2016. Vol. 111. P. 63–67. https://doi.org/10.1016/j.ijmachtools.2016.10.003
- Venu Gopala Rao G., Mahajan P., Bhatnagar N. Micro-mechanical modeling of machining of FRP composites – Cutting force analysis // Composites Science and Technology. 2007. Vol. 67. Iss. 3-4. P. 579–593. https://doi.org/10.1016/j.compscitech.2006.08.010
- Vasilchenko S., Cherny S., Khrulkov V. Improving dynamic and energy characteristics of electromechanical systems with single-phase rectifiers // International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). 2020. https://doi.org/10.1109/ICIEAM48468.2020.9111902
- Shet Chandrakanth, Deng Xiaomin. Finite element analysis of the orthogonal metal cutting process // Journal of Materials Processing Technology. 2000. Vol. 105. Iss. 1-2. Р. 95–109. https://doi.org/10.1016/S0924-0136(00)00595-1
- Mokritskii B.Yа., Pustovalov D.A., Vereschaka A.A., Vereschaka A.S., Verhoturov A.D. Evaluation of efficiency of edge tool on the basis of new technique for analyzing parameters of scribing mark // Applied Mechanics and Materials. 2015. Vol. 719-720. P. 96–101. https://doi.org/10.4028/www.scientific.net/AMM.719-720.96
- Zaychenko I.V., Bazheryanu V.V., Gordin S.A. Improving the energy efficiency of autoclave equipment by optimizing the technology of manufacturing parts from polymer composite materials // Materials Science and Engineering: IOP Conference Series. 2020. Vol. 753. Ch. 2. Р. 032069. https://doi.org/10.1088/1757-899X/753/3/032069
- Shatla M., Kerk C., Altan T. Process modeling in machining. Part I: determination of flow stress data // International Journal of Machine Tools and Manufacture. 2001. Vol. 41. Iss. 10. Р. 1511–1534. https://doi.org/10.1016/S0890-6955(01)00016-5
- Dobryshkin A.Y., Sysoev O.E., Nyein Sitt Naing. Modeling of the opened shell forced vibrations with a small associated mass, with hinged operation by the Pade' aproximation method // Materials Science and Engineering: IOP Conference Series. 2020. Vol. 753. Ch. 2. Р. 032024. https://doi.org/10.1088/1757-899x/753/3/032024
Supplementary files


