Research into thickening processes of concentrates of gold-bearing ores

Cover Page

Cite item

Full Text

Abstract

The aim was to improve the thickening of an ultra-fine flotation concentrate by efficient flocculants when processing refractory sulphide gold-bearing ores from South Urals deposits. The chemical ore composition was studied using gravimetric, atomic absorption, chemical, X-ray fluorescent, assay test and electron microprobe analytical methods. Particle size analysis of the ultra-fine flotation concentrate under study was performed using a Malvern Hydro Mastersizer 2000MU analyser (Malvern Panalytical Ltd, UK). In thickening experiments, samples with the same composition after the ultra-fine grinding process were used. The gold content in the ore was determined (22.8 g/t) based on analytical studies on the material composition of samples. At least 92% of the final grain size class is -20 microns. Laboratory tests performed on eight samples containing polyacrylamide-based flocculants revealed an optimal A44 flocculant (produced in China). The flocculant meets the requirements for minimum flow rate, deposition rate and L:S ratio. The specific performance of the JX20 radial thickener (JPMFex Corp. Ltd., China) was calculated. The optimal flocculant flow rate is 200 g/t per 1 t of thickened material, leading to thickening 50 t of pulp per 1 m2 of thickener per day. The A44 flocculant is recommended for pilot testing. Thus, developing, testing and implementing fundamentally new reagents and improving existing technologies of processing gold-containing ores and concentrates are necessary to intensify the ore dewatering processes after ultra-fine grinding.

About the authors

D. A. Chernigov

Irkutsk National Research Technical University; Irkutsk Research Institute оf Precious and Rare Metals and Diamonds

Email: dchernigov@mail.ru

A. V. Bogorodskiy

Irkutsk Research Institute оf Precious and Rare Metals and Diamonds

Email: bav@irgiredmet.ru

R. N. Nabiulin

Irkutsk Research Institute оf Precious and Rare Metals and Diamonds

Email: r_nabiulin@irgiredmet.ru

T. S. Mineeva

Irkutsk National Research Technical University

Email: _ksu_@inbox.ru

References

  1. Баликов С.В., Дементьев В.Е., Минеев Г.Г. Плавка золотосодержащих концентратов. Иркутск: ОАО «Иргиредмет», 2002. 368 с.
  2. Syed S. Recovery of gold from secondary sources – A review // Hydrometallurgy. 2012. Vol. 115-116. P. 30–51. https://doi.org/10.1016/j.hydromet.2011.12.012
  3. Abbruzzese C., Fornari P., Massidda R., Veglio F., Ubaldini S. Thiosulphate leaching for gold hydrometallurgy // Hydrometallurgy. 1995. Vol. 39. P. 265–276.
  4. Willner J., Fornalczyk A., Cebulski J., Janiszewski K. Preliminary studies on simultaneous recovery of precious metals from different waste materials by pyrometallurgical method // Archives of Metallurgy and Materials. 2014. Vol. 59. Iss. 2. P. 801–804. https://doi.org/10.2478/amm-2014-0136
  5. Черняк А.С. Химическое обогащение руд. М.: Недра, 1987. 224 с.
  6. Василькова А.О., Бывальцев А.В., Хмельницкая О.Д., Войлошников Г.И. Оценка возможности переработки техногенного сырья с применением ультранизких концентраций цианистого натрия. Вестник Иркутского государственного технического университета. 2020. Т. 24. № 5. С. 1105–1112. https://doi.org/10.21285/1814-3520-2020-5-1105-1112
  7. Chanturya V.A., Bunin I.J., Lunin V.D. Nontraditional highly effective breaking up technology for resistant gold containing ores and beneficiation products // XXII International Mineral Processing Congress (Cape Town, 28 September – 3 October 2003). Cape Town, 2003. Р. 135–139.
  8. Hedjazi F., Monhemius A.J. Industrial application of ammonia-assisted cyanide leaching for copper-gold ores // Minerals Engineering. 2018. Vol. 126. P. 123–129. https://doi.org/10.1016/j.mineng.2018.07.005
  9. Ёлшин В.В., Голодков Ю.Э. Исследование двойного электрического слоя при сорбции золота из тиокарбамидных растворов на активированные угли. Вестник Иркутского государственного технического университета. 2020. Т. 24. № 6. С. 1337–1346. https://doi.org/10.21285/1814-3520-2020-6-1337-1346
  10. Жмурова В.В., Немчинова Н.В., Васильев А.А. Гидрохимическая очистка от меди и свинца золотосодержащих катодных осадков // Цветные металлы. 2019. № 8. С. 64–74. https://doi.org/10.17580/tsm.2019.08.07
  11. Жмурова В.В., Немчинова Н.В. Опыт комплексного использования золотосодержащего сырья при производстве драгоценных металлов // Записки горного института. 2018. Т. 233. С. 506–511. https://doi.org/10.31897/PMI.2018.5.506
  12. Ahmed H.A.M., El-Midany A.A. Statistical optimization of gold recovery from difficult leachable sulphide minerals using bacteria // Materials Testing – Materials and Components Technology and Application. 2012. Vol. 54. Iss. 5. P. 351–357. https://doi.org/10.3139/120.110339
  13. Зеленов В.И. Методика исследования золотосодержащих руд. М.: Недра, 1973. 227 с.
  14. Сизяков В.М., Иваник С.А., Фокина С.Б. Исследование процессов сгущения и фильтрации тонкодисперсных окисленных пульп // Обогащение руд. 2012. № 2. С. 24–28.
  15. Peng Yunyan, Jin Dong, Li Jingmiao, Wang Chunfeng. Flocculation of mineral processing wastewater with Polyacrylamide // Earth and Environmental Science: IOP Conference Series. 2020. Vol. 565. Р. 012101. https://doi.org/10.1088/1755-1315/565/1/012101
  16. Liu Wen-li, Hu Yue-hua, Sun Wei. Separation of diaspore from bauxite by selective flocculation using hydrolyzed polyacrylamide // Journal of Central South University. 2014. Vol. 21. P. 1470–1476. https://doi.org/10.1007/s11771-014-2087-0
  17. Yu Baoqiang, Che Xiaokui, Zheng Qi. Flotation of ultra-fine rare earth minerals with selective flocculant PHDA // Minerals Engineering. 2014. Vol. 60. P. 23–25. https://doi.org/10.1016/j.mineng.2014.01.027
  18. Yu M., Mei G., Li Y., Liu D., Peng Y. Recovering rare earths from waste phosphors using froth flotation and selective flocculation // Mining, Metallurgy & Exploration. 2017. Vol. 34. No. 4. P. 161–169. https://doi.org/10.19150/mmp.7855
  19. Неизвестных Н.Н., Богданов А.В., Мячин А.В., Федотов К.В. Исследование процесса сгущения пульпы при переработке руд месторождений Биркачан и Цоколь // Вестник Иркутского государственного технического университета. 2013. № 6. С. 147–151.
  20. Tyutrin A.A., Vologin A.S. Analysis of the Composition and Properties of the Silicon Production Wet Cleaning Sludge to Identify Sustainable Techniques for its Processing // Solid State Phenomena. 2021. Vol. 316. Р. 649–654. https://doi.org/10.4028/www.scientific.net/SSP.316.649
  21. Ivanik S.A., Ilyukhin D.A. Hydrometallurgical technology for gold recovery from refractory gold-bearing raw materials and the solution to problems of subsequent dehydration processes // Journal of Industrial Pollution Control. 2017. Vol. 33. No. 1. P. 891–897.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).