Adding hydrogen to fuel gas to improve energy performance of gas-turbine plants

Cover Page

Cite item

Full Text

Abstract

The study aims to calculate the technical and economic efficiency of adding hydrogen to natural gas to improve the energy characteristic of the fuel in gas-turbine plants during long-term gas field operations. Mathematical modelling techniques in the CAS CFDPT (computer-aided system for computational fluid dynamics of power turbomachinery) program were used to develop a mathematical model of the General Electric 6FA gas turbine engine. It was shown that a decrease in the calorific value of the fuel leads to an increase in fuel consumption by 11% and the amount of CO2, NO2 in the turbine exhaust gas. It was determined that, during the freezing season and peak power rating operations, the turbine power is limited by the fuel system capacity (its maximum value amounted to 5.04 kg/s). It was shown that energy characteristics can be improved by adding hydrogen to the feed natural gas. Energy efficiency was calculated at different fuel components (hydrogen and natural gas) ratios at variable-load operation in the range between 75 and 85 MW. Instant fuel gas flow amounted to 5.04 kg/s (with 4.5% hydrogen and 95.5% natural gas in the feed fuel) at 85 MW. Due to its high cost, the use of hydrogen is only advisable in peak power rating operations to reach the maximum capacity of the gas-turbine plant. The proposed method of adding 4.5% hydrogen to fuel gas allows the maximum fuel consumption to be maintained at a rate of 5.04 kg/s to reach the topping power of 85 MW. When using this method, there are no limitations on the maximum and peak capacity of the gas-turbine plant.

About the authors

G. E. Marin

Kazan State Power Engineering University; JSC ‘Tatenergo’, Branch of Kazan CHP-2

Email: george64199@mail.ru

B. M. Osipov

Kazan State Power Engineering University

Email: obm0099@ya.ru

A. R. Akhmetshin

Kazan State Power Engineering University; Roselectromontazh Association

Email: dr.akhmetshin@ieee.org

M. V. Savina

Kazan State Power Engineering University

Email: pmv_83@mail.ru

References

  1. Марьин Г.Е., Осипов Б.М. Критерии выбора составов топлив при их сжигании в газотурбинных установках с незначительными переделками топливной системы // Вестник Иркутского государственного технического университета. 2020. Т. 24. № 2. С. 356–365. https://doi.org/10.21285/1814-3520-2020-2-356-365
  2. Марьин Г.Е., Осипов Б.М., Зунино П., Менделеев Д.И. Влияние состава топлива на энергетические параметры газотурбинной установки // Известия высших учебных заведений. Проблемы энергетики. 2020. Т. 22. № 5. С. 41–51. https://doi.org/10.30724/1998-9903-2020-22-5-41-51
  3. De Vries H., Mokhov A.V., Levinsky H.B. The impact of natural gas/hydrogen mixtures on the performance of enduse equipment: Interchangeability analysis for domestic appliances // Applied Energy. 2017. Vol. 208. Р. 1007–1019. https://doi.org/10.1016/j.apenergy.2017.09.049
  4. Cho H.M., He Bang-Quan. Combustion and emission characteristics of a lean burn natural gas engine // International Journal of Automotive Technology. 2008. Vol. 9. No. 4. P. 415–422. https://doi.org/10.1007/s12239-008-0050-5
  5. Lokini P., Roshan D.K., Kushari A. Influence of swirl and primary zone airflow rate on the emissions and performance of a liquid-fueled gas turbine combustor // Journal of Energy Resources Technology. 2019. Vol. 141. Iss. 6. P. 062009. https://doi.org/10.1115/1.4042410
  6. Marin G.E., Mendeleev D.I., Akhmetshin A.R. Analysis of changes in the thermophysical parameters of the gas turbine unit working fluid depending on the fuel gas composition // International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) (Vladivostok, 1–4 October 2019). Vladivostok: IEEE, 2019. P. 1–4. https://doi.org/10.1109/FarEastCon.2019.8934021
  7. Alcaráz-Calderon A.M., González-Díaz М.О., Mendez Á., González-Santaló J.M., González-Díaz А. Natural gas combined cycle with exhaust gas recirculation and CO2 capture at part-load operation // Journal of the Energy Institute. 2019. Vol. 92. Iss. 2. P. 370–381. https://doi.org/10.1016/j.joei.2017.12.007
  8. Swamy M., Singh К., Pavan A.H.V., Harison M.C.A., Jayaraman G. Failure investigation of frame 6FA gas turbine compressor blades // Transactions of the Indian Institute of Metals. 2016. Vol. 69. Р. 647–651. https://doi.org/10.1007/s12666-015-0775-6
  9. Титов А.В., Осипов Б.М. Инструментальная среда для исследования газотурбинных установок на математических моделях // Вестник Казанского государственного энергетического университета. 2017. № 4. С. 17–21.
  10. Солуянов Ю.И., Федотов А.И., Ахметшин А.Р., Халтурин В.А. Энергосберегающие решения в распределительных электрических сетях на основе анализа их фактических нагрузок // Электроэнергия. Передача и распределение. 2020. № 5. С. 68–73.
  11. Солуянов Ю.И., Федотов А.И., Ахметшин А.Р., Халтурин В.А. Актуализация расчетных электрических нагрузок с последующим практическим применением на примере Республики Татарстан // Промышленная энергетика. 2021. № 2. С. 32–40. https://doi.org/10.34831/EP.2021.15.61.005
  12. Ермолаев Д.В., Тимофеева С.С. Влияние моделей структуры асфальтенов высоковязкого углеводородного сырья на энергетические характеристики получаемого синтез-газа // Труды Академэнерго. 2019. № 3. С. 122–134. https://doi.org/10.34129/2070-4755-2019-56-3-122-134
  13. Бачев Н.Л., Шилова А.А., Матюнин О.О., Бульбович Р.В. Организация низкотемпературного бедного горения утилизируемого газа // Проблемы региональной энергетики. 2020. № 3. С. 56–68. https://doi.org/10.5281/zenodo.4018968
  14. Lukai Zheng, Cronly J., Ubogu E., Ahmed I., Yang Zhang, Khandelwal B. Experimental investigation on alternative fuel combustion performance using a gas turbine combustor // Applied Energy. 2019. Vol. 238. P. 15301542. https://doi.org/10.1016/j.apenergy.2019.01.175
  15. Lukai Zheng, Chenxing Ling, Ubogu E.A., Cronly J., Ahmed I., Yang Zhang, et al. Effects of alternative fuel properties on particulate produced in a gas turbine combustor // Energy Fuels. 2018. Vol. 32. No. 9. P. 9883-9897. https://doi.org/10.1021/acs.energyfuels.8b01442
  16. EsclapezL., Ma P.C., Mayhew E., Rui Xu, Stouffer S., Tonghun Lee, et al. Fuel effects on lean blow-out in a realistic gas turbine combustor // Combustion and Flame. 2017. Vol. 181. P. 82–99. https://doi.org/10.1016/j.combustflame.2017.02.035
  17. Цанев С.В., Буров В.Д., Торжков В.Е. Дожигание топлива в тепловой схеме конденсационных парогазовых установок с котлами-утилизаторами одного давления. М.: Изд-во МЭИ, 2004. 48 с.
  18. Kayfeci M., Keçebaş A., Bayat M. Hydrogen Production // Solar Hydrogen Production: Processes, Systems and Technologies. Academic Press, 2019. Р. 45–83. https://doi.org/10.1016/B978-0-12-814853-2.00003-5
  19. Dodds P.E., Staffell I., Hawkes A.D., Li Francis, Grünewald P., McDowall W., et al. Hydrogen and fuel cell technologies for heating: a review // International Journal of Hydrogen Energy. 2015. Vol. 40. Iss. 5. P. 2065–2083. https://doi.org/10.1016/j.ijhydene.2014.11.059
  20. Jinlong Liu, Dumitrescu C.E. Numerical investigation of methane number and Wobbe index effects in LeanBurn natural gas spark-ignition combustion // Energy Fuels. 2019. Vol. 33. No. 5. P. 4564–4574. https://doi.org/10.1021/acs.energyfuels.8b04463
  21. Shaker M., Sundfor E., Farine G., Slater C., Farine P.A., Briand D. Design and optimization of a low power and fast response viscometer used for determination of the natural gas Wobbe index // IEEE Sensors Journal. 2019. Vol. 19. No. 23. P. 10999–11006. https://doi.org/10.1109/jsen.2019.2928479
  22. Roy P.S., Ryu Ch., Chan Seung Park. Predicting Wobbe index and methane number of a renewable natural gas by the measurement of simple physical properties // Fuel. 2018. Vol. 224. P. 121–127. https://doi.org/10.1016/j.fuel.2018.03.074
  23. Islamova S.I., Timofeeva S.S., Khamatgalimov A.R., Ermolaev D.V. Kinetic analysis of the thermal decomposition of lowland and high-moor peats // Solid Fuel Chemistry. 2020. Vol. 54. P. 154–162. https://doi.org/10.3103/S0361521920030040

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).