Improving the efficiency of the carbothermal reduction of red mud by microwave treatment
- Authors: Khalifa A.A.1, Bazhin V.Y.1, Shalabi M.E.2, Abdelmoneim A.3, Omran M.3
-
Affiliations:
- St. Petersburg Mining University
- Central Metallurgical Research Institute
- University of Oulu
- Issue: Vol 25, No 2 (2021)
- Pages: 264-279
- Section: Metallurgy
- URL: https://journals.rcsi.science/2782-4004/article/view/382249
- DOI: https://doi.org/10.21285/1814-3520-2021-2-264-279
- ID: 382249
Cite item
Full Text
Abstract
Keywords
About the authors
A. A. Khalifa
St. Petersburg Mining University
Email: engahmedkhalifa2@gmail.com
V. Yu. Bazhin
St. Petersburg Mining University
Email: bazhin-alfoil@mail.ru
M. E.-М.К Shalabi
Central Metallurgical Research Institute
Email: mehshalabi@hotmail.com
A. Abdelmoneim
University of Oulu
Email: ahmed.abdelmonem@oulu.fi
M. Omran
University of Oulu
Email: mamdouh.omran@oulu.fi
References
- Халифа А.А., Утков В.А., Бричкин В.Н. Влияние красного шлама на предотвращение полиморфизма двухкальциевого силиката и саморазрушение агломерата // Вестник Иркутского государственного технического университета. 2020. Т. 24. № 1. С. 231-240. https://doi.org/10.21285/1814-3520-2020-1-231-240
- Бричкин В.Н., Дубовиков О.А., Николаева Н.В., Беседин А.А. Обезвоживание красного шлама и основные направления его переработки // Обогащение руд. 2014. № 1. С. 44-48.
- Беседин А.А., Утков В.А., Бричкин В.Н., Сизяков В.М. Агломерационное спекание красных шламов // Обогащение руд. 2014. № 2. С. 28-31.
- Piirainen V.Y., Boeva A.A., Nikitina T.Y. Application of new materials for red mud immobilization // Key Engineering Materials. 2020. № 854. P. 182-188.
- Трушко В.Л., Дашко Р.Э., Кусков В.Б., Клямко А.С. Технология «холодного» брикетирования богатых руд Яковлевского месторождения // Записки Горного института. 2011. Т. 190. С. 133-137.
- Akcil A., Akhmadiyeva N., Abdulvaliyev R., Abhilash, Meshram P. Overview on extraction and separation of rare earth elements from red mud: focus on Scandium // Mineral Processing and Extractive Metallurgy Review. 2018. Vol. 39. Iss. 3. P. 145-151. https://doi.org/10.1080/08827508.2017.1288116
- Dmitriev A. The comprehensive utilisation of red mud utilisation in blast furnace // Metallurgical Solid Waste / ed. Yingyi Zhang. 2018. https://doi.org/10.5772/intechopen.80087
- Zhou Xianlin, Luo Yanhong, Chen Tiejun, Zhu Deqing. Enhancing the reduction of high-aluminum iron ore by synergistic reducing with high-manganese iron ore // Metals. 2019. Vol. 9. Iss. 15. P. 1-12. https://doi.org/10.3390/met9010015
- Пягай И.Н., Кожевников В.Л., Пасечник Л.А., Скачков В.М. Переработка отвального шлама глиноземного производства с извлечением скандиевого концентрата // Записки Горного Института. 2016. Т. 218. С. 225-232.
- Pontikes Y., Angelopoulos G.N. Bauxite residue in cement and cementitious applications: current status and a possible way forward // Resources, Conservation and Recycling. 2013. Vol. 73. P. 53-63. https://doi.org/10.1016/j.resconrec.2013.01.005
- Paramguru R.K., Rath P.C., Misra V.N. Trends in red mud utilization - a review // Mineral Processing and Extractive Metallurgy Review. 2005. Vol. 26. Iss. 1. P. 1 -29. https://doi.org/10.1080/08827500490477603
- Rai S., Wasewar K.L., Mukhopadhyay J., Yoo C., Uslu H. Neutralization and utilization of red mud for its better waste management // Archives of Environmental Science. 2012. Vol. 6. P. 13-33.
- Garg A, Yadav H. Study of red mud as an alternative building material for interlocking block manufacturing in construction industry // International Journal of Materials Science and Engineering Study. 2015. Vol. 3. Iss. 4. P. 295-300. https://doi.org/10.17706/ijmse.2015.3.4.295-300
- Трушко В.Л., Кусков В.Б., Кускова Я.В. Комплексная переработка богатых железных руд // Обогащение руд. 2014. № 1. P. 39-43.
- Kuskova Y.V., Kuskov V.B. Development of technology for the production of natural red iron oxide pigments // Inzynieria Mineralna. 2017. № 1. Р. 217-220.
- Agrawal S., Rayapudi V., Dhawan N. Extraction of iron values from red mud // Materials Today: Proceedings. 2018. Vol. 5. Iss. 9. Part 1. P. 17064-17072. https://doi.org/10.1016/j.matpr.2018.04.113
- Agrawal S., Rayapudi V., Dhawan N. Microwave reduction of red mud for recovery of iron values // Journal of Sustainable Metallurgy. 2018. Vol. 4. Iss. 3. P. 427-43. https://doi.org/10.1007/s40831-018-0183-3
- Trushko V.L., Utkov V.A., Sivushov A.A. Reducing the environmental impact of blast furnaces by means of red mud from alumina production // Steel in Translation. 2017. Vol. 47. No. 8. P. 576-578. https://doi.org/10.3103/S0967091217080149
- Shiryaeva E.V., Podgorodetskiy G.S., Malysheva T.Yа., Detkova T.V., Gorbunov V.B. Influence of lowalkali red mud on the composition and structure of sintering batch consisting of heterogeneous iron ore concentrates // Steel in Translation. 2014. Vol. 44. No. 9. P. 625-628. https://doi.org/10.3103/S0967091214090150
- Трушко В.Л., Утков В.А. Разработка импортозамещающих технологий повышения производительности агломерационных машин и прочности агломератов // Записки Горного Института. 2016. Т. 221. С. 675-680. https://doi.org/10.18454/pmi.2016.5.675
- Podgorodetskiy G., Gorbunov V., Panov A., Petrov S., Gorbachev S. Complex additives on the basis of red mud for intensification of iron-ore sintering and pelletizing // Light Metals / ed. M. Hyland. 2015. P. 107-111. https://doi.org/10.1002/9781119093435.ch20
- Kumar R., Srivastava J.P., Premchand. Utilization of iron values of red mud for metallurgical applications // Environmental and Waste Management / eds. A. Ban-dopadhyay, N.G. Goswami, P.R. Rao. Jamshedpur: National Metallurgical Laboratory, 1998. Р. 108-119. https://doi.org/10.13140/RG.2.1.2077.7446
- Balomenos E., Panias D. Iron recovery and production of high added value products from the metallurgical byproducts of primary aluminium and ferronickel industries // 3rd International Slag Valorisation Symposium (Leuven, 19-20 March 2013). Leuven, 2013. P. 161-172.
- Branca T.A., Colla V., Algermissen D., Granbom H., Martini U., Morillon A., Pietruck R., Rosendahl S. Reuse and recycling of by-products in the steel sector: Recent achievements paving the way to circular economy and industrial symbiosis in europe // Metals. 2020. Vol. 10. Iss. 3. Р. 345. https://doi.org/10.3390/met10030345
- Sadangi J.K., Das S.P., Tripathy A., Biswal S. K. Investigation into recovery of iron values from red mud dumps // Separation Science and Technology. 2018. Vol. 53. Iss. 14. P. 2186-2191. https://doi.org/10.1080/01496395.2018.1446984
- Утков В.А., Леонтьев Л.И. Повышение прочности агломератов и окатышей при помощи бокситового красного шлама // Сталь. 2005. Т. 9. С. 2-4.
- Singh S., Gupta D., Jain V., Sharma A.K. Microwave processing of materials and applications in manufacturing industries: A Review // Materials and Manufacturing Processes. 2015. Vol. 30. Iss. 1. P. 1-29. https://doi.org/10.1080/10426914.2014.952028
- Jones D.A., Lelyveld T.P., Mavrofidis S.D., Kingman S. W., Miles, N.J. Microwave heating applications in environmental engineering - A review // Resources, Conservation and Recycling. 2002. Vol. 34. Iss. 2. P. 75-90. https://doi.org/10.1016/S0921-3449(01)00088-X
- Nishioka K., Taniguchi T., Ueki Y., Ohno K-I., Maeda T. , Shimizu M. Gasification and reduction behavior of plastics and iron ore mixtures by microwave heating // ISIJ International. 2007. Vol. 47. Iss. 4. P. 602-607. https://doi.org/10.2355/isijinternational.47.602
- Das S., Mukhopadhyay A.K., Datta S., Basu D. Prospects of microwave processing: An overview // Bulletin of Materials Science. 2009. Vol. 32. Iss. 1. P. 1-13. https://doi.org/10.1007/s12034-009-0001-4
- Guo Sheng-hui, Chen Guo, Peng Jin-hui, Chen Jin, Li Dong-bo, Liu Li-jun. Non-isothermal microwave leaching kinetics and absorption characteristics of primary titanium-rich materials // Transactions of Nonferrous Metals Society of China. 2010. Vol. 20. Iss. 4. P. 721-726. https://doi.org/10.1016/S1003-6326(09)60204-1
- Omran M., Fabritius T. Improved removal of zinc from blast furnace sludge by particle size separation and microwave heating // Minerals Engineering. 2018. Vol. 127. P. 265-276. https://doi.org/10.1016/j.mineng.2018.08.002
- Bykov Yu.V., Rybakov K.I., Semenov V.E. High-temperature microwave processing of materials // Journal of Physics D: Applied Physics. 2001. Vol. 34. P. R55-R75. https://doi.org/10.1088/0022-3727/34/13/201
- Clark D.E., Folz D.C., West J.K. Processing materials with microwave energy // Materials Science and Engineering A. 2000. Vol. 287. No. 2. P. 153-158. https://doi.org/10.1016/S0921-5093(00)00768-1
- Veres J., Lovas M., Hredzak S., Zubrik A., Dolinska S., Skrmsky J. Application of microwave energy in waste treatment // Inzynieria Mineralna. 2017. Vol. 2017. Iss. 1. P. 39-44.
- Agrawal D. Latest global developments in microwave materials processing // Materials Research Innovations. 2010. Vol. 14. Iss. 1. P. 3-8. https://doi.org/10.1179/143307510X12599329342926
- El-Geassy A.A., Halim K.S.A., Bahgat M., Mousa E.A., El-Shereafy E.E., El-Tawil A.A. Carbothermic reduction of Fe2O3/C compacts: Comparative approach to kinetics and mechanism // Ironmaking and Steelmaking. 2013. Vol. 40. Iss. 7. P. 534-544. https://doi.org/10.1179/1743281212Y.0000000076
- Aune R.E., Seetharaman S. Thermodynamic aspects of metals processing // Fundamentals of metallurgy // ed. S. Seetharaman. England: ED, 2005. Р. 38-81.
- Haque K.E. Microwave energy for mineral treatment processes - a brief review // International Journal of Mineral Processing. 1999. Vol. 57. P. 1-24.
- Litvinenko V. The role of hydrocarbons in the global energy agenda: the focus on liquefied natural gas // Resources. 2020. Vol. 9. Iss. 59. Р. 1-22. https://doi.org/10.3390/resources9050059
- Litvinenko V.S. Digital economy as a factor in the technological development of the mineral sector // Natural Resources Research. 2020. Vol. 29. No. 3. P. 1521 -1541. https://doi.org/10.1007/s11053-019-09568-4
Supplementary files


