Improving the efficiency of the carbothermal reduction of red mud by microwave treatment

Cover Page

Cite item

Full Text

Abstract

In this work, we studied the effect of microwave treatment of red mud briquettes containting more than 48% of Fe on the process of iron reduction under various conditions of heat treatment. Research samples were collected from red mud formed during the production of alumina from bauxite at the Ural Aluminum Smelter. The chemical composition of mud samples was examined by X-ray fluorescence analysis. The composition of initial mud and that of agglomerates obtained after treatment in microwave and muffle furnaces was studied using the X-ray diffraction method. Phase transitions and structural changes occurring under the effect of heating were studied by scanning electron microscopy. The experimental briquettes comprising red mud and charcoal were treated at 850°C and 1000°C in a microwave furnace (under the frequency of 2.45 GHz and the power of 900 W). For reference, briquettes of analogous composition were heat-treated in a muffle furnace under the same conditions. It was found that, under the conditions of microwave heating to 1000°C for 10 min, hematite is completely reduced to metallic iron after the addition of wustite. An analysis of the m i-crostructure of the samples after microwave treatment showed that the particles of metallic iron in the as-obtained pellet-agglomerates have a larger size than in those after conventional thermal heating in a muffle furnace. The metallized phases of reduced iron at the end of heat treatment in a microwave furnace create a stable durable body of agglomerates. The evidence-based parameters of the process can become a basis for designing a technology for recycling such an industrial material as red mud. The obtained high-strength pellets from red mud with a high content of reduced iron (up to 85%) may be used as an alternative charge material for ferrous metallurgy. The proposed technology for recycling red mud into pellet-agglomerates can be applied in various industries to reduce environmental impact on the production areas of alumina plants.

About the authors

A. A. Khalifa

St. Petersburg Mining University

Email: engahmedkhalifa2@gmail.com

V. Yu. Bazhin

St. Petersburg Mining University

Email: bazhin-alfoil@mail.ru

M. E.-М.К Shalabi

Central Metallurgical Research Institute

Email: mehshalabi@hotmail.com

A. Abdelmoneim

University of Oulu

Email: ahmed.abdelmonem@oulu.fi

M. Omran

University of Oulu

Email: mamdouh.omran@oulu.fi

References

  1. Халифа А.А., Утков В.А., Бричкин В.Н. Влияние красного шлама на предотвращение полиморфизма двухкальциевого силиката и саморазрушение агломерата // Вестник Иркутского государственного технического университета. 2020. Т. 24. № 1. С. 231-240. https://doi.org/10.21285/1814-3520-2020-1-231-240
  2. Бричкин В.Н., Дубовиков О.А., Николаева Н.В., Беседин А.А. Обезвоживание красного шлама и основные направления его переработки // Обогащение руд. 2014. № 1. С. 44-48.
  3. Беседин А.А., Утков В.А., Бричкин В.Н., Сизяков В.М. Агломерационное спекание красных шламов // Обогащение руд. 2014. № 2. С. 28-31.
  4. Piirainen V.Y., Boeva A.A., Nikitina T.Y. Application of new materials for red mud immobilization // Key Engineering Materials. 2020. № 854. P. 182-188.
  5. Трушко В.Л., Дашко Р.Э., Кусков В.Б., Клямко А.С. Технология «холодного» брикетирования богатых руд Яковлевского месторождения // Записки Горного института. 2011. Т. 190. С. 133-137.
  6. Akcil A., Akhmadiyeva N., Abdulvaliyev R., Abhilash, Meshram P. Overview on extraction and separation of rare earth elements from red mud: focus on Scandium // Mineral Processing and Extractive Metallurgy Review. 2018. Vol. 39. Iss. 3. P. 145-151. https://doi.org/10.1080/08827508.2017.1288116
  7. Dmitriev A. The comprehensive utilisation of red mud utilisation in blast furnace // Metallurgical Solid Waste / ed. Yingyi Zhang. 2018. https://doi.org/10.5772/intechopen.80087
  8. Zhou Xianlin, Luo Yanhong, Chen Tiejun, Zhu Deqing. Enhancing the reduction of high-aluminum iron ore by synergistic reducing with high-manganese iron ore // Metals. 2019. Vol. 9. Iss. 15. P. 1-12. https://doi.org/10.3390/met9010015
  9. Пягай И.Н., Кожевников В.Л., Пасечник Л.А., Скачков В.М. Переработка отвального шлама глиноземного производства с извлечением скандиевого концентрата // Записки Горного Института. 2016. Т. 218. С. 225-232.
  10. Pontikes Y., Angelopoulos G.N. Bauxite residue in cement and cementitious applications: current status and a possible way forward // Resources, Conservation and Recycling. 2013. Vol. 73. P. 53-63. https://doi.org/10.1016/j.resconrec.2013.01.005
  11. Paramguru R.K., Rath P.C., Misra V.N. Trends in red mud utilization - a review // Mineral Processing and Extractive Metallurgy Review. 2005. Vol. 26. Iss. 1. P. 1 -29. https://doi.org/10.1080/08827500490477603
  12. Rai S., Wasewar K.L., Mukhopadhyay J., Yoo C., Uslu H. Neutralization and utilization of red mud for its better waste management // Archives of Environmental Science. 2012. Vol. 6. P. 13-33.
  13. Garg A, Yadav H. Study of red mud as an alternative building material for interlocking block manufacturing in construction industry // International Journal of Materials Science and Engineering Study. 2015. Vol. 3. Iss. 4. P. 295-300. https://doi.org/10.17706/ijmse.2015.3.4.295-300
  14. Трушко В.Л., Кусков В.Б., Кускова Я.В. Комплексная переработка богатых железных руд // Обогащение руд. 2014. № 1. P. 39-43.
  15. Kuskova Y.V., Kuskov V.B. Development of technology for the production of natural red iron oxide pigments // Inzynieria Mineralna. 2017. № 1. Р. 217-220.
  16. Agrawal S., Rayapudi V., Dhawan N. Extraction of iron values from red mud // Materials Today: Proceedings. 2018. Vol. 5. Iss. 9. Part 1. P. 17064-17072. https://doi.org/10.1016/j.matpr.2018.04.113
  17. Agrawal S., Rayapudi V., Dhawan N. Microwave reduction of red mud for recovery of iron values // Journal of Sustainable Metallurgy. 2018. Vol. 4. Iss. 3. P. 427-43. https://doi.org/10.1007/s40831-018-0183-3
  18. Trushko V.L., Utkov V.A., Sivushov A.A. Reducing the environmental impact of blast furnaces by means of red mud from alumina production // Steel in Translation. 2017. Vol. 47. No. 8. P. 576-578. https://doi.org/10.3103/S0967091217080149
  19. Shiryaeva E.V., Podgorodetskiy G.S., Malysheva T.Yа., Detkova T.V., Gorbunov V.B. Influence of lowalkali red mud on the composition and structure of sintering batch consisting of heterogeneous iron ore concentrates // Steel in Translation. 2014. Vol. 44. No. 9. P. 625-628. https://doi.org/10.3103/S0967091214090150
  20. Трушко В.Л., Утков В.А. Разработка импортозамещающих технологий повышения производительности агломерационных машин и прочности агломератов // Записки Горного Института. 2016. Т. 221. С. 675-680. https://doi.org/10.18454/pmi.2016.5.675
  21. Podgorodetskiy G., Gorbunov V., Panov A., Petrov S., Gorbachev S. Complex additives on the basis of red mud for intensification of iron-ore sintering and pelletizing // Light Metals / ed. M. Hyland. 2015. P. 107-111. https://doi.org/10.1002/9781119093435.ch20
  22. Kumar R., Srivastava J.P., Premchand. Utilization of iron values of red mud for metallurgical applications // Environmental and Waste Management / eds. A. Ban-dopadhyay, N.G. Goswami, P.R. Rao. Jamshedpur: National Metallurgical Laboratory, 1998. Р. 108-119. https://doi.org/10.13140/RG.2.1.2077.7446
  23. Balomenos E., Panias D. Iron recovery and production of high added value products from the metallurgical byproducts of primary aluminium and ferronickel industries // 3rd International Slag Valorisation Symposium (Leuven, 19-20 March 2013). Leuven, 2013. P. 161-172.
  24. Branca T.A., Colla V., Algermissen D., Granbom H., Martini U., Morillon A., Pietruck R., Rosendahl S. Reuse and recycling of by-products in the steel sector: Recent achievements paving the way to circular economy and industrial symbiosis in europe // Metals. 2020. Vol. 10. Iss. 3. Р. 345. https://doi.org/10.3390/met10030345
  25. Sadangi J.K., Das S.P., Tripathy A., Biswal S. K. Investigation into recovery of iron values from red mud dumps // Separation Science and Technology. 2018. Vol. 53. Iss. 14. P. 2186-2191. https://doi.org/10.1080/01496395.2018.1446984
  26. Утков В.А., Леонтьев Л.И. Повышение прочности агломератов и окатышей при помощи бокситового красного шлама // Сталь. 2005. Т. 9. С. 2-4.
  27. Singh S., Gupta D., Jain V., Sharma A.K. Microwave processing of materials and applications in manufacturing industries: A Review // Materials and Manufacturing Processes. 2015. Vol. 30. Iss. 1. P. 1-29. https://doi.org/10.1080/10426914.2014.952028
  28. Jones D.A., Lelyveld T.P., Mavrofidis S.D., Kingman S. W., Miles, N.J. Microwave heating applications in environmental engineering - A review // Resources, Conservation and Recycling. 2002. Vol. 34. Iss. 2. P. 75-90. https://doi.org/10.1016/S0921-3449(01)00088-X
  29. Nishioka K., Taniguchi T., Ueki Y., Ohno K-I., Maeda T. , Shimizu M. Gasification and reduction behavior of plastics and iron ore mixtures by microwave heating // ISIJ International. 2007. Vol. 47. Iss. 4. P. 602-607. https://doi.org/10.2355/isijinternational.47.602
  30. Das S., Mukhopadhyay A.K., Datta S., Basu D. Prospects of microwave processing: An overview // Bulletin of Materials Science. 2009. Vol. 32. Iss. 1. P. 1-13. https://doi.org/10.1007/s12034-009-0001-4
  31. Guo Sheng-hui, Chen Guo, Peng Jin-hui, Chen Jin, Li Dong-bo, Liu Li-jun. Non-isothermal microwave leaching kinetics and absorption characteristics of primary titanium-rich materials // Transactions of Nonferrous Metals Society of China. 2010. Vol. 20. Iss. 4. P. 721-726. https://doi.org/10.1016/S1003-6326(09)60204-1
  32. Omran M., Fabritius T. Improved removal of zinc from blast furnace sludge by particle size separation and microwave heating // Minerals Engineering. 2018. Vol. 127. P. 265-276. https://doi.org/10.1016/j.mineng.2018.08.002
  33. Bykov Yu.V., Rybakov K.I., Semenov V.E. High-temperature microwave processing of materials // Journal of Physics D: Applied Physics. 2001. Vol. 34. P. R55-R75. https://doi.org/10.1088/0022-3727/34/13/201
  34. Clark D.E., Folz D.C., West J.K. Processing materials with microwave energy // Materials Science and Engineering A. 2000. Vol. 287. No. 2. P. 153-158. https://doi.org/10.1016/S0921-5093(00)00768-1
  35. Veres J., Lovas M., Hredzak S., Zubrik A., Dolinska S., Skrmsky J. Application of microwave energy in waste treatment // Inzynieria Mineralna. 2017. Vol. 2017. Iss. 1. P. 39-44.
  36. Agrawal D. Latest global developments in microwave materials processing // Materials Research Innovations. 2010. Vol. 14. Iss. 1. P. 3-8. https://doi.org/10.1179/143307510X12599329342926
  37. El-Geassy A.A., Halim K.S.A., Bahgat M., Mousa E.A., El-Shereafy E.E., El-Tawil A.A. Carbothermic reduction of Fe2O3/C compacts: Comparative approach to kinetics and mechanism // Ironmaking and Steelmaking. 2013. Vol. 40. Iss. 7. P. 534-544. https://doi.org/10.1179/1743281212Y.0000000076
  38. Aune R.E., Seetharaman S. Thermodynamic aspects of metals processing // Fundamentals of metallurgy // ed. S. Seetharaman. England: ED, 2005. Р. 38-81.
  39. Haque K.E. Microwave energy for mineral treatment processes - a brief review // International Journal of Mineral Processing. 1999. Vol. 57. P. 1-24.
  40. Litvinenko V. The role of hydrocarbons in the global energy agenda: the focus on liquefied natural gas // Resources. 2020. Vol. 9. Iss. 59. Р. 1-22. https://doi.org/10.3390/resources9050059
  41. Litvinenko V.S. Digital economy as a factor in the technological development of the mineral sector // Natural Resources Research. 2020. Vol. 29. No. 3. P. 1521 -1541. https://doi.org/10.1007/s11053-019-09568-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).