Evaluation of the effect of wind-operated power plants on the total inertia of an electric power system

Cover Page

Cite item

Full Text

Abstract

This paper is aimed at determining the effect of a variable number of Type 4 wind turbines in the total generation of the corresponding electric power system on the parameters of an asynchronous regime of such a system. Processes occurring in an electric power system were simulated using an all-mode real-time simulation complex of electric power systems constituting a multi-processor software and hardware system. A model of an electric power system was developed, which, in addition to conventional power sources, included a wind-operated power plant combining a variable number of Type 4 wind turbines. The automatic control system of the simulated wind-operated power plant comprised a control loop (in terms of active power and voltage) equipped with an additional regulator of virtual inertia. An analysis of changes in the parameters of the asynchronous regime using a virtual inertia algorithm showed that the time of its advancement along the protected line was reduced maximally by 0.1 s. However, the time of the first cycle of asynchronous motion between two generators in the post-emergency regime increased by 2 times. Thus, for a wind-operated plant with a capacity of 100 MW, the time of asynchronous motion was 0.36 sec and 0.74 sec without using and when using a virtual inertia algorithm, respectively. It was experimentally confirmed that an increase in the power of a wind-operated power plant leads to a decrease in both the time of advancement of the asynchronous regime and the time, during which conventional generators transit from the synchronous regime. The latter was evidenced by the effect of Type 4 wind turbines on the value of total inertia, which ranged from 8.746 to 5.478 s. A study of the virtual inertia algorithm confirmed its impact on the electromechanical transient processes in power systems. The most favourable effect was noted at a virtual inertia value of 2 s and a wind-operated power plant capacity of 100 MW.

About the authors

I. A. Razzhivin

National Research Tomsk Polytechnic University

Email: lionrash@tpu.ru

N. Yu. Ruban

National Research Tomsk Polytechnic University

Email: rubanny@tpu.ru

V. E. Rudnik

National Research Tomsk Polytechnic University

Email: fordlp006@mail.ru

A. S. Gusev

National Research Tomsk Polytechnic University

Email: gusev_as@tpu.ru

References

  1. Герасимов А.С., Есипович А.Х., Смирнов А.Н. Об опыте верификации цифровых и физических моделей энергосистем // Электрические станции. 2010. № 11. С. 14-19.
  2. Akhmatov V., Nielsen A.H., Pedersen J.K., Nymann O. Variable-speed wind turbines with multi-pole synchronous permanent magnet generators. Part I: Modelling in Dynamic Simulation Tools // Wind Engineering. 2003. Vol. 27. Iss. 6. P. 531-548. https://doi.org/10.1260/030952403773617490
  3. Erlich I., Wilch М. Primary frequency control by wind turbines // 3rd IEEE PES ISGT Europe (Berlin, 14-17 October 2012). Berlin: IEEE, 2012. Р. 2-17.
  4. Gautam D., Goel L., Ayyanar R., Vittal V., Harbour T. Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems // IEEE Transactions on Power Systems. 2011. Vol. 26. Iss. 1. Р. 214-224. https://doi.Org/10.1109/TPWRS.2010.2051690
  5. Fernandez-Guillamon А., Gomez-Lazaro E., Muljadi E., Molina-Garcia A. Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time // Renewable and Sustainable Energy Reviews. 2019. Vol. 115. https://doi.org/10.1016/j.rser.2019.109369
  6. Ellis A., Kazachkov Y., Muljadi E., Pourbeik P., Sanchez-Gasca J.J. Description and technical specifications for generic WTG models - A status report // IEEE/PES Power Systems Conference and Exposition. 2011. https://doi.org/10.1109/PSCE.2011.5772473
  7. Agrawal R., Bharradwaj S.K., Kothari D.P. An Educational and professional simulation tools in power systems and FACTS controllers - «An Overview» // International Journal of Electrical, Electronics and Computer Engineering. 2013. Vol. 2. Iss. 2. P. 91-96.
  8. Ackermann T. Wind power in power systems. 2nd ed. Chichester, West Sussex: John Wiley & Sons, 2012. 1049 p. https://doi.org/10.1002/0470012684
  9. Стычинский З.А, Воропай Н.И Возобновляемые источники энергии: теоретические основы, технологии, технические характеристики, экономика. Магдебург: MAFO, 2010. 223 с.
  10. Morren J., De Haan S.W.H., Kling W.L., Ferreira J.A. Wind turbines emulating inertia and supporting primary frequency control // IEEE Transactions on Power Systems. 2006. Vol. 21. Iss. 1. P. 433-434. https://doi.org/10.1109/TPWRS.2005.861956
  11. Muljadi E., Yin Cheng Zhang, Gevorgian V., Kosterev D. Understanding dynamic model validation of a wind turbine generator and a wind power plant // Energy Conversion Congress and Exposition (ECCE) (Milwaukee, 18-22 September 2016). Milwaukee: IEEE, 2016. P. 1-5. https://doi.org/10.1109/ECCE.2016.7855542
  12. Clark K., Miller N.W., Sanchez-Gasca J.J. Modeling of GE wind turbine-generators for grid studies. New York, 2010.. URL: https://www.researchgate.net/publication/267218696_Modeling_of_GE_Wind_Turbine-Generators_for_Grid_Studies_Prepared_by.(25.09.2020).
  13. Wachtel S., Beekmann A. Contribution of wind energy converters with inertia emulation to frequency control and frequency stability in power systems // 8 International Conference Workshop on large-scale integration of wind Power into Power systems as well as on transmission networks for offshore wind farms (Bremen, 14-15 October 2009). Bremen, 2009. Р. 460-465.
  14. Gonzalez-Longatt F. Impact of emulated inertia from wind power on under-frequency protection schemes of future power systems // Journal of Modern Power Systems and Clean Energy. 2016. Vol. 4. P. 211-218.
  15. Michalke G., Hansen A.D., Hartkopf T. Control strategy of a variable speed wind turbine with multipole permanent magnet synchronous generator. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.6144&rep=rep1&type=pdf(25.09.2020).
  16. Negnevitsky M., Voropai N., Kurbatsky V., Tomin N., Panasetsky D. Development of an intelligent system for preventing large-scale emergencies in systems // Power and Energy Society General Meeting (Vancouver, 21-25 July 2013). Vancouver: IEEE, 2013. P. 1-5. https://doi.org/10.1109/PESMG.2013.6672099
  17. Гусев А.С., Хрущев Ю.В., Гурин С.В., Свечкарев С.В., Плодистый И.Л. Всережимный моделирующий комплекс реального времени электроэнергетических систем // Электричество. 2009. № 12. С. 5-8.
  18. Andreev M.V., Gusev A.S., Ruban N., Suvorov A., Ufa R., Askarov A., et al. Hybrid real-time simulator of large-scale power systems // IEEE Transactions on Power Systems. 2019. Vol. 34. Iss. 2. P. 1404-1415. https://doi.org/10.1109/TPWRS.2018.2876668
  19. Разживин И.А., Рубан Н.Ю., Аскаров А.Б., Уфа Р.А. Разработка программно-технических средств моделирования ветроэнергетической установки 4 типа. Вестник Иркутского государственного технического университета. 2020. Т. 24. № 1. С. 183-194. https://doi.org/10.21285/1814-3520-2020-1-183-194
  20. Разживин И.А., Рубан Н.Ю., Суворов А.А., Уфа Р.А., Аскаров А.Б., Рудник В.Е.. Разработка физической модели статического преобразователя напряжения ВЭУ 4 типа в рамках гибридного подхода // Интеллектуальная электротехника. 2020. № 1. С. 85-97. https://doi.org/10.46960/2658-6754_2020_1_85

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).