Evaluation of the effect of wind-operated power plants on the total inertia of an electric power system
- Authors: Razzhivin I.A.1, Ruban N.Y.1, Rudnik V.E.1, Gusev A.S.1
-
Affiliations:
- National Research Tomsk Polytechnic University
- Issue: Vol 25, No 2 (2021)
- Pages: 220-234
- Section: Power Engineering
- URL: https://journals.rcsi.science/2782-4004/article/view/382244
- DOI: https://doi.org/10.21285/1814-3520-2021-2-220-234
- ID: 382244
Cite item
Full Text
Abstract
About the authors
I. A. Razzhivin
National Research Tomsk Polytechnic University
Email: lionrash@tpu.ru
N. Yu. Ruban
National Research Tomsk Polytechnic University
Email: rubanny@tpu.ru
V. E. Rudnik
National Research Tomsk Polytechnic University
Email: fordlp006@mail.ru
A. S. Gusev
National Research Tomsk Polytechnic University
Email: gusev_as@tpu.ru
References
- Герасимов А.С., Есипович А.Х., Смирнов А.Н. Об опыте верификации цифровых и физических моделей энергосистем // Электрические станции. 2010. № 11. С. 14-19.
- Akhmatov V., Nielsen A.H., Pedersen J.K., Nymann O. Variable-speed wind turbines with multi-pole synchronous permanent magnet generators. Part I: Modelling in Dynamic Simulation Tools // Wind Engineering. 2003. Vol. 27. Iss. 6. P. 531-548. https://doi.org/10.1260/030952403773617490
- Erlich I., Wilch М. Primary frequency control by wind turbines // 3rd IEEE PES ISGT Europe (Berlin, 14-17 October 2012). Berlin: IEEE, 2012. Р. 2-17.
- Gautam D., Goel L., Ayyanar R., Vittal V., Harbour T. Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems // IEEE Transactions on Power Systems. 2011. Vol. 26. Iss. 1. Р. 214-224. https://doi.Org/10.1109/TPWRS.2010.2051690
- Fernandez-Guillamon А., Gomez-Lazaro E., Muljadi E., Molina-Garcia A. Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time // Renewable and Sustainable Energy Reviews. 2019. Vol. 115. https://doi.org/10.1016/j.rser.2019.109369
- Ellis A., Kazachkov Y., Muljadi E., Pourbeik P., Sanchez-Gasca J.J. Description and technical specifications for generic WTG models - A status report // IEEE/PES Power Systems Conference and Exposition. 2011. https://doi.org/10.1109/PSCE.2011.5772473
- Agrawal R., Bharradwaj S.K., Kothari D.P. An Educational and professional simulation tools in power systems and FACTS controllers - «An Overview» // International Journal of Electrical, Electronics and Computer Engineering. 2013. Vol. 2. Iss. 2. P. 91-96.
- Ackermann T. Wind power in power systems. 2nd ed. Chichester, West Sussex: John Wiley & Sons, 2012. 1049 p. https://doi.org/10.1002/0470012684
- Стычинский З.А, Воропай Н.И Возобновляемые источники энергии: теоретические основы, технологии, технические характеристики, экономика. Магдебург: MAFO, 2010. 223 с.
- Morren J., De Haan S.W.H., Kling W.L., Ferreira J.A. Wind turbines emulating inertia and supporting primary frequency control // IEEE Transactions on Power Systems. 2006. Vol. 21. Iss. 1. P. 433-434. https://doi.org/10.1109/TPWRS.2005.861956
- Muljadi E., Yin Cheng Zhang, Gevorgian V., Kosterev D. Understanding dynamic model validation of a wind turbine generator and a wind power plant // Energy Conversion Congress and Exposition (ECCE) (Milwaukee, 18-22 September 2016). Milwaukee: IEEE, 2016. P. 1-5. https://doi.org/10.1109/ECCE.2016.7855542
- Clark K., Miller N.W., Sanchez-Gasca J.J. Modeling of GE wind turbine-generators for grid studies. New York, 2010.. URL: https://www.researchgate.net/publication/267218696_Modeling_of_GE_Wind_Turbine-Generators_for_Grid_Studies_Prepared_by.(25.09.2020).
- Wachtel S., Beekmann A. Contribution of wind energy converters with inertia emulation to frequency control and frequency stability in power systems // 8 International Conference Workshop on large-scale integration of wind Power into Power systems as well as on transmission networks for offshore wind farms (Bremen, 14-15 October 2009). Bremen, 2009. Р. 460-465.
- Gonzalez-Longatt F. Impact of emulated inertia from wind power on under-frequency protection schemes of future power systems // Journal of Modern Power Systems and Clean Energy. 2016. Vol. 4. P. 211-218.
- Michalke G., Hansen A.D., Hartkopf T. Control strategy of a variable speed wind turbine with multipole permanent magnet synchronous generator. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.6144&rep=rep1&type=pdf(25.09.2020).
- Negnevitsky M., Voropai N., Kurbatsky V., Tomin N., Panasetsky D. Development of an intelligent system for preventing large-scale emergencies in systems // Power and Energy Society General Meeting (Vancouver, 21-25 July 2013). Vancouver: IEEE, 2013. P. 1-5. https://doi.org/10.1109/PESMG.2013.6672099
- Гусев А.С., Хрущев Ю.В., Гурин С.В., Свечкарев С.В., Плодистый И.Л. Всережимный моделирующий комплекс реального времени электроэнергетических систем // Электричество. 2009. № 12. С. 5-8.
- Andreev M.V., Gusev A.S., Ruban N., Suvorov A., Ufa R., Askarov A., et al. Hybrid real-time simulator of large-scale power systems // IEEE Transactions on Power Systems. 2019. Vol. 34. Iss. 2. P. 1404-1415. https://doi.org/10.1109/TPWRS.2018.2876668
- Разживин И.А., Рубан Н.Ю., Аскаров А.Б., Уфа Р.А. Разработка программно-технических средств моделирования ветроэнергетической установки 4 типа. Вестник Иркутского государственного технического университета. 2020. Т. 24. № 1. С. 183-194. https://doi.org/10.21285/1814-3520-2020-1-183-194
- Разживин И.А., Рубан Н.Ю., Суворов А.А., Уфа Р.А., Аскаров А.Б., Рудник В.Е.. Разработка физической модели статического преобразователя напряжения ВЭУ 4 типа в рамках гибридного подхода // Интеллектуальная электротехника. 2020. № 1. С. 85-97. https://doi.org/10.46960/2658-6754_2020_1_85
Supplementary files


