Influence of the weight coefficients of measurements on the consistency of the assessment and calculation results of the power supply system steady-state operation conditions
- Authors: Glazunova A.M.1, Kolosok I.N.1
-
Affiliations:
- Melentiev Energy Systems Institute, SB RAS
- Issue: Vol 25, No 2 (2021)
- Pages: 172-182
- Section: Power Engineering
- URL: https://journals.rcsi.science/2782-4004/article/view/382240
- DOI: https://doi.org/10.21285/1814-3520-2021-2-172-182
- ID: 382240
Cite item
Full Text
Abstract
The aim of this work is to develop an improved procedure for assessing the state of power supply systems based on adjusting the weight coefficients of measurements. To this end, non-linear optimisation methods were used. The control equations and the solution of the simultaneous linear equations were performed using the Crout method. The results of the calculation of the electrical power steady-state mode were considered as a reference. The lower the difference between the evaluation and steady-state calculation results, the higher the accuracy of the overall state assessment procedure. The problem of correcting the weight factors is set and solved as a nonlinear optimisation problem, where the optimisation parameters are taken as the dispersion of the measurements. The objective function was formulated as follows: to minimise the measurement evaluation dispersions that are part of a single control equation by maximising the active power measurements dispersion in the swing bus of the power supply system. In this study, limitations in the form of equation and inequality are monitored. The problem of optimising the dispersions is solved after the first iteration of the state assessment; starting with the second iteration, the state assessment is performed with new measurement weight factors. The calculations were performed on a 6-node test circuit. The control equations are drawn from the current measurements. The measurements data on the selected control equation of the test circuit are used to calculate the target function. The accuracy of the dispersions redistribution and their extreme values are controlled by the limitations. The results showed that, when adjusting the dispersion of measurements, the power assessments at all nodes are closer to the steady-state mode calculation results.
About the authors
A. M. Glazunova
Melentiev Energy Systems Institute, SB RAS
Email: glazunova@isem.irk.ru
I. N. Kolosok
Melentiev Energy Systems Institute, SB RAS
Email: kolosok@isem.irk.ru
References
- Аюев Б.И., Машалов Е.В., Неуймин В.Г., Шубин Н.Г. Основные технологические задачи Системного оператора // Вестник Уральского государственного технического университета. 2004. Т. 12. № 42. С. 27-30.
- Идельчик В.И. Расчеты и оптимизация режимов электрических сетей и систем. М.: Энергоатомиздат, 1988. 190 с.
- Крумм Л.А. Методы приведенного градиента при управлении электроэнергетическими системами. Новосибирск: Изд-во «Наука», 1977. 368 с.
- Лисицын Н.В., Морозов Ф.Я., Окин А.А., Семенов В.А. Единая энергосистема России. М.: Изд-во МЭИ, 1999. 282 с.
- Schweppe F.C., Wildes J. Power system static-state estimation. Part I: Exact Model // IEEE Transactions on Power Apparatus and Systems. 1970. Vol. PAS-89. Iss. 1. Р. 120-125. https://doi.org/10.1109/TPAS.1970.292678
- Гамм А.З. Оценка текущего состояния электроэнергетической системы как задача нелинейного программирования // Электричество. 1972. № 9. С. 1-7.
- Гамм А.З., Глазунова А.М., Гришин Ю.А., Колосок И.Н., Коркина Е.С. Развитие алгоритмов оценивания состояния электроэнергетической системы // Электричество. 2009. № 6. С. 41-49.
- Гамм А.З. Статистические методы оценивания состояния электроэнергетических систем. М.: Наука, 1976. 220 с.
- Abur A., Exposito A.G. Power system state estimation -theory and implementation. Part 2. New York: Marchel Dekker, 2004. P. 9-26.
- Abur A., Celik M.K. A fast algorithm for the weighted least absolute value state estimation // IEEE Power Engineering Review. 1991. Vol. 11. Iss. 2. Р. 41. https://doi.org/10.1109/MPER.1991.88711
- Mili I., Cheniae M.G., Vichare N.S., Rousseeuw P.J. Robust state estimation based on projection statistics (of power systems) // IEEE Transactions on Power Systems. 1996. Vol. 11. Iss. 2. Р. 1118-1127. https://doi.org/10.1109/59.496203
- Хохлов М.В. Пороговые свойства робастного оценивания состояния электроэнергетических систем // Электричество. 2010. № 4. С. 2-12.
- Гамм А.З., Герасимов Л.Н., Гришин Ю.А., Колосок И.Н. Оценивание состояния в электроэнергетике / под ред. Ю.Н. Руденко. М.: Изд-во «Наука», 1983. 320 с.
- Гамм А.З., Глазунова А.М., Колосок И.Н., Овчинников В.В. Методы оценки дисперсий телеизмерений в электроэнергетических системах // Электричество. 1997. № 7. С. 2-9.
- Гамм А.З., Колосок И.Н., Обнаружение грубых ошибок телеизмерений в электроэнергетических системах / отв. ред. В.И. Зоркальцев. Новосибирск: Изд-во «Наука», 2000. 152 с.
- Rathod N., Patel H., Joshi S. Implementing two stage hybrid state estimation with various approaches // International Conference on Smart Grids and Energy Systems (Perth, 23-26 November, 2020). Perth: IEEE, 2020. https://doi.org/10.1109/SGES51519.2020.00117
- Massignan J.A.D., London J.B.A., Maciel C.D., Bes-sani M. PMUs and SCADA measurements in power system state estimation through Bayesian inference // IEEE Milan PowerTech (Milan, 23-27 June 2019). Milan: IEEE, 2019. https://doi.org/10.1109/PTC.2019.8810750
- Ren P., Abur A. Modification of boundary zone measurements to avoid spreading of errors // IEEE Eindhoven PowerTech (Eindhoven, 29 June - 2 July 2015). Eindhoven: IEEE, 2015. https://doi.org/10.1109/PTC.2015.7232282
- Glazunova A., Kolosok I., Semshchikov E. Bad data detection by dynamic state estimation for the case of low redundancy of measurements // Proceedings of the 9th International Scientific Symposium on Electrical Power Engineering (13-16 May 2014). Cavtat: IEEE, 2017. https://doi.org/10.1109/ENERGYCON.2014.6850459
- Демидович Б.П., Марон И.А., Основы вычислительной математики. М.: Изд-во «Наука». Главная ред. физ.-мат. литры, 1966. 658 с.
Supplementary files


