Computer simulation and full-scale measurements of the load flow in a functioning heating network

Cover Page

Cite item

Full Text

Abstract

The article aims to identify patterns in the distribution of heating energy to consumers with a varying availability of regulation equipment under real conditions of a central heating network, as well as to compare the results of computer simulation with full-scale measurements. For computer simulation, well-known mathematical methods for calculating the load flow in hydraulic circuits were used. Experimental studies of the operation modes of heat supply systems were carried out using the data of the control and monitoring systems of thermal power plants using the Siemens Simatic PCS7 software, a Portaflow 300 ultrasonic flow meter, stationary electromagnetic flow transducers, verified and certified manometers and thermometers. The graphs of the actual hydrodynamic modes of the heating network under study were obtained at outdoor air temperatures from +8 to -37°C, as well as under abnormal conditions (temperature drop in the supply pipeline and pressure drop at the heating network input). It was proposed to use jointly the simulation by means of the JA_Net software and full-scale measurements of the thermohydraulic operating modes of a centralised heat supply system, whose consumers have a various degree of regulation equipment. It was shown that the proposed complex method of qualitative and quantitative assessment of the efficiency of district heating networks makes it possible to identify the features of control of their hydraulic modes when connecting new consumers with a varying degree of automation. According to the obtained characteristics of changes in the flow rate of the coolant in the consumers’ internal systems depending on the pressure drop at the tie-in point, the lack of response to emergency situations on part of the consumers whose heat supply systems are equipped with the means of qualitative and quantitative regulation of the heat load, is associated with the process of automatic adjustment of the degree of opening of flow controllers and control valves at individual points. In future work, we will develop guidelines for levelling the imbalance of the heating network under the conditions of uneven provision of facilities with automation equipment when implementing projects for the complex modernisation of heat consumers or connecting new facilities to existing heat supply networks. 

About the authors

D. A. Kalabin

Siberian Federal University

Email: promenergetik@mail.ru

A. Yu. Lipovka

Siberian Federal University

Yu. L. Lipovka

Siberian Federal University

References

  1. Шалагинова З.И., Токарев В.В. Прикладные проблемы и методические подходы к организации эксплуатационных режимов теплоснабжающих систем // Теплоэнергетика. 2019. № 10. С. 33–49. https://doi.org/10.1134/S0040363619100059
  2. Шалагинова З.И. Разработка методики расчета узловых цен тепловой энергии на базе моделирования теплогидравлических режимов систем теплоснабжения для решения задач управления и оптимизации // Теплоэнергетика. 2018. № 10. С. 96–108. https://doi.org/10.1134/S0040363618100077
  3. Токарев В.В. Разработка методики секционирования кольцевых тепловых сетей закрытых систем теплоснабжения // Теплоэнергетика. 2018. № 6. С. 84–94. https://doi.org/10.1134/S0040363618060103
  4. Якшин С.В. Применение метода расщепления графа при оптимизации параметров тепловой сети // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 10. С. 129–140. http://doi.org/10.21285/1814-3520-2018-10-129-140
  5. Stennikov V., Mednikova E., Postnikov I., Penkovskii A. Optimization of the effective heat supply radius for the district heating systems. Environmental and Climate Technologies. 2019. Vol. 23. Iss. 2. Р. 207–221. https://doi.org/10.2478/rtuect-2019-0064
  6. Крицкий Г.Г., Игнатчик В.С. Цифровые технологии в инженерной инфраструктуре города // Актуальные проблемы военно-научных исследований. СПб., 2019. № S2. С. 167–184.
  7. Dou Y., Togawa T., Dong Liang, Fujii M., Ohnishi S., Tanikawa H., et al. Innovative planning and evaluation system for district heating using waste heat considering spatial configuration: a case in Fukushima, Japan // Resources, Conservation and Recycling. 2018. Vol. 128. Р. 406–416. https://doi.org/10.1016/j.resconrec.2016.03.006
  8. Xiong Wangqi, Wang Jiandong. Minimizing power consumption of an experimental HVAC system based on parallel grid searching // Energies. 2020. Vol. 13. No. 8. https://doi.org/10.3390/en13082083
  9. Clegg S., Mancarella P. Integrated electricity-heat-gas modelling and assessment, with applications to the Great Britain system. Part I: High-resolution spatial and temporal heat demand modelling // Energy. 2019. Vol. 184. Р. 191– 203. https://doi.org/10.1016/j.energy.2018.02.078
  10. Brocklebank I., Beck S.B.M., Styring P. A simple approach to modeling rural and urban district heating // Frontiers in Energy Research. 2018. https://doi.org/10.3389/fenrg.2018.00103
  11. Larsen H.V., Pálsson H., Bøhm B., Ravn H.F. Aggregated dynamic simulation model of district heating networks // Energy Conversion and Management. 2002. Vol. 43. Iss. 8. P. 995–1019. https://doi.org/10.1016/S0196-8904(01)00093-0
  12. Büchele R., Kranzl L., Hummel M. Integrated strategic heating and cooling planning on regional level for the case of Brasov // Energy. 2019. Vol. 171. Р. 475–474. https://doi.org/10.1016/j.energy.2019.01.030
  13. Mednikova E., Stennikov V., Postnikov I., Penkovskii A. Development features of heat power industry legislation in Russia // Environmental and Climate Technologies.
  14. Vol. 23. Iss. 2. С. 22–35. https://doi.org/10.2478/rtuect-2019-0052
  15. Lygnerud K. Challenges for business change in district heating // Energy, Sustainability and Society. 2018. Vol. 8. No. 20. https://doi.org/10.1186/s13705-018-0161-4
  16. Hermansson K., Kos C., Starfelt F., Kyprianidis K., Lindberg C.-F., Zimmerman N., et al. An automated approach to building and simulating dynamic district heating networks // IFAC-PapersOnLine. 2018. Vol. 51. Iss. 2. P. 855–860. https://doi.org/10.1016/j.ifacol.2018.04.021
  17. Sartor K., Thomas D., Dewallef P. A comparative study for simulating heat transport in large district heating networks // International Journal of Heat and Technology. 2018. Vol. 36. Iss. 1. Р. 301–308. https://doi.org/10.18280/ijht.360140
  18. Sartor K., Dewalef P. Experimental validation of heat transport modelling in district heating networks // Energy. 2017. Vol. 137. Р. 961–968. https://doi.org/10.1016/j.energy.2017.02.161
  19. Guelpa E. Impact of network modelling in the analysis of district heating systems // Energy. 2020. Vol. 213. https://doi.org/10.1016/j.energy.2020.118393
  20. Penkovskii A., Stennikov V. Mathematical modeling and optimization of the monopoly heating market // International Journal of Energy Economics and Policy. 2020. Vol. 10. No. 4. С. 342–351. https://doi.org/10.32479/ijeep.9284
  21. Betancourt Schwarz M., Mabrouk M.T., Santo Silva C., Haurant P., Lacarrière B. Modified finite volumes method for the simulation of dynamic district heating networks // Energy. 2019. Vol. 182. Р. 954–964. https://doi.org/10.1016/j.energy.2019.06.038
  22. Guelpa E., Verda V. Compact physical model for simulation of thermal networks // Energy. 2019. Vol. 175. Р. 998–1008. https://doi.org/10.1016/j.energy.2019.03.064
  23. Zhao Jing, Shan Yu. An influencing parameters analysis of district heating network time delays based on the CFD method // Energies. 2019. Vol. 12. No. 7. https://doi.org/10.3390/en12071297
  24. Хасилев В.Я., Меренков А.П., Каганович Б.М.. Методы и алгоритмы расчета тепловых сетей / под ред. Хасилева В.Я., Меренкова А.П. М.: Энергия, 1978. 176 с.
  25. Lipovka A.Y., Lipovka Yu.L. Application of «Gradient» algorithm to modeling thermal pipeline networks with pumping stations // Journal of Siberian Federal University. Engineering & Technologies. 2013. Vol. 6. № 1. P. 28–35.. URL: http://elib.sfukras.ru/bitstream/handle/2311/126983/03_Lipevka.pdf?se quence=1&isAllowed=y (29.05.2020).
  26. Липовка Ю.Л., Калабин Д.А. Гидравлическая устойчивость в условиях неравномерной автоматизации систем теплоснабжения // Энергосбережение и водоподготовка. 2018. № 3. С. 19–24.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).