Modern methods for the desulphurisation of high sulphur content petroleum coke for use in carbon graphite materials

Cover Page

Cite item

Full Text

Abstract

Objective – a review of modern desulfurization technologies for high-sulphur petroleum coke. This study will further asses their effectiveness, economic feasibility and impact on the properties of carbon materials used in the production of cold-pressed masses, aluminium electrolyser anodes and graphitized electrodes. Based on the analysis of literature sources, methods for the treatment of both coking feedstock and finished coke are considered: hydrodesulphurisation, oxidative and alkaline treatment, thermal calcination, biological leaching and hybrid technologies. Feedstock characteristics and process parameters (temperature, pressure, particle size, catalysts) were studied as well as their effect on the degree of sulphur removal and the associated structural changes in the carbon matrix. Hydrodesulphurisation of coking feedstock reduces sulphur content to 0.2–1.5%, but is costly, has low coke yield and loses effectiveness in the presence of metals in the ash. Alkaline treatment removes up to 90% of the sulphur, but increases ash content and porosity. Thermal calcination up to 1500°C removes 85% of the sulphur but leads to degradation of the carbon structure. Biological processes can be up to 92% efficient, but are time consuming. Hybrid technologies, such as vacuum heat treatment with alkaline activation, show the greatest potential for desulphurisation, achieving maximum sulphur removal efficiencies (up to 98.5%) while maintaining mechanical strength. This shows that the choice of desulphurisation method depends on the initial composition of the coke and the requirements of the final product. For example, desulphurisation of coking feedstock is economically justified for low-sulphur oils, whereas treatment of finished coke is suitable for high-sulphur materials, but reduces their density and strength. Hybrid processes that combine cleaning efficiency with minimal impact on coke structure are promising. The literature review showed that the development of low-cost catalysts, reduction of energy consumption and utilisation of sulphur containing gases are necessary for the scale-up of effective technologies.

About the authors

V. Yu. Bazhin

Empress Catherine II Saint-Petersburg Mining University

Email: bazhin-alfoil@mail.ru
ORCID iD: 0000-0001-8231-3833

B. E. Matylsky

Empress Catherine II Saint-Petersburg Mining University

Email: bronislav98@mail.ru

References

  1. Литвиненко В.С., Петров Е.И., Василевская Д.В., Яковенко А.В., Наумов И.А., Ратников М.А. Оценка роли государства в управлении минеральными ресурсами // Записки Горного института. 2023. Т. 259. С. 95–111. https://doi.org/10.31897/PMI.2022.100. EDN: APFXQN.
  2. Рудко В.А., Габдулхаков Р.Р., Пягай И.Н. Научно-техническое обоснование возможности организации производства игольчатого кокса в России // Записки Горного института. 2023. Т. 263. С. 795–809. EDN: KYNHWL.
  3. Баранов А.Н., Гусева Е.А., Красноперов А.Н., Победаш А.С., Юдин А.Н. Исследование коррозионных процессов в производстве алюминия и разработка новых методов защиты металлов // Известия высших учебных заведений. Цветная металлургия. 2008. № 4. С. 10. EDN: JVLGQV.
  4. Немчинова Н.В., Коновалов Н.П., Коновалов П.Н., Дошлов И.О. Снижение экологической нагрузки на окружающую среду при производстве алюминия за счёт применения нефтяного пека // iPolytech Journal. 2023. Т. 27. № 4. С. 800–808. https://doi.org/10.21285/1814-3520-2023-4-800-808. EDN: YRJBRD.
  5. Yu Xin, Yu Dunxi, Yu Ge, Liu Fangqi, Han Jingkun, Wu Jianqun, et al. Temperature-resolved evolution and speciation of sulfur during pyrolysis of a high-sulfur petroleum coke // Fuel. 2021. Vol. 295. P. 120609. https://doi.org/10.1016/j.fuel.2021.120609.
  6. Liu Tao, Long Mujun, Jiang Wenxiang, Chen Dengfu, Yu Sheng, Duan Huamei, et al. Variations in the true density and sulfur removal forms of petroleum coke during an ultrahigh-temperature desulfurization process // Energy and Fuels. 2017. Vol. 31. No. 7. P. 7693–7699. https://doi.org/10.1021/acs.energyfuels.7b01085.
  7. Ахметов М.М., Карпинская Н.Н., Теляшев Э.Г. Нефтяной кокс: получение, качество, прокаливание, области использования. Уфа: АО «Институт нефтехимпереработки», 2018. 584 с.
  8. Pintowantoro S., Setiawan M.A., Abdul F. Study of variation grain size in desulfurization process of calcined petroleum coke // AIP Conference Proceedings. 2018. Vol. 1945. No. 1. Р. 020035. https://doi.org/10.1063/1.5030257.
  9. Шариков Ю.В., Шариков Ф.Ю., Крылов К.А. Математическая модель оптимального управления процессом производства нефтяного кокса в трубчатых вращающихся печах // Теоретические основы химической технологии. 2021. Т. 55. № 4. С. 529–538. https://doi.org/10.31857/S0040357121030192. EDN: RSDOWU.
  10. Фещенко Р.Ю., Ерохина О.О., Литаврин И.О., Рябошук С.В. Повышение окислительной стойкости графитированных электродов дуговых печей // Черные металлы. 2023. № 7. C. 31–36. https://doi.org/10.17580/chm.2023.07.03. EDN: DLVSZL.
  11. Edwards L. The history and future challenges of calcined petroleum coke production and use in aluminum smelting // JOM. 2015. Vol. 67. No. 2. P. 308–321. https://doi.org/10.1007/s11837-014-1248-9.
  12. Feshchenko R.Yu., Eremin R.N., Erokhina O.O., Povarov V.G. Improvement of oxidation resistance of graphite blocks for the electrolytic production of magnesium by impregnation with phosphate solutions. Part 2 // Tsvetnye Metally. 2022. Vol. 2022. No. 1. P. 24–29. https://doi.org/10.17580/tsm.2022.01.02.
  13. Efimov I., Gabdulkhakov R.R., Rudko V.A. Fine-tuned convolutional neural network as a tool for automatic microstructure analysis of petroleum and pitch cokes // Fuel. 2024. Vol. 376. P. 132725. https://doi.org/10.1016/j.fuel.2024.132725.
  14. Zhao Pu-jie, Ma Cheng, Wang Ji-tong, Qiao Wen-ming, Ling Li-cheng. Almost total desulfurization of high-sulfur petroleum coke by Na2CO3-promoted calcination combined with ultrasonic-assisted chemical oxidation // New Carbon Materials. 2018. Vol. 33. No. 6. P. 587–594. https://doi.org/10.1016/S1872-5805(18)60359-2.
  15. Fedorova E.R., Morgunov V.V., Pupysheva E.A. Effect of variation of internal diameter along the length of a rotary kiln on material movement // Non-ferrous Metals. 2024. Vol. 56. No. 1. P. 28–34. https://doi.org/10.17580/nfm.2024.01.05.
  16. Bazhin V.Yu., Masko O.N., Nikitina L.N. Decarbonization of exhaust gases of industrial metallurgical furnaces // Metallurgist. 2024. Vol. 67. No. 9-10. P. 1407–1417. https://doi.org/10.1007/s11015-024-01632-6.
  17. Strizhenok A.V., Bykova M.V., Korotaeva A.E. Extractive Industries as a source of greenhouse gas emissions and the possibility of its natural sequestration under the climatic conditions of Central and Northern Eurasia // Journal of Ecological Engineering. 2024. Vol. 25. Iss. 5. P. 43–69. https://doi.org/10.12911/22998993/185585.
  18. Martynov S.A., Masko O.N., Fedorov S.N. Innovative ore-thermal furnace control systems // Tsvetnye Metally. 2022. Vol. 2022. No. 4. P. 87–94. https://doi.org/10.17580/tsm.2022.04.11.
  19. Gao Longxin, He Wenhui, Zhai Weiming, Xin Mudi, Wang Wei, Xiang Yanjuan, et al. Influence of aromatics on the hydrodesulfurization reaction pathway of the NiMo/Al2O3 catalyst using quasi-in situ characterization techniques // Fuel. 2025. Vol. 393. P. 135052. https://doi.org/10.1016/j.fuel.2025.135052.
  20. Коноплин Р.Р., Кондрашева Н.К., Парфенова Л.В. К вопросу о технологии производства отечественных катализаторов гидроочистки (Обзор) // Известия Санкт-Петербургского государственного технологического института (технического университета). 2020. № 53. С. 35–43. https://doi.org/10.36807/1998-9849-2020-53-79-35-43. EDN: PQQLLF.
  21. Petrova D., Lyubimenko V., Ivanov E., Gushchin P., Kolesnikov I. Energy basics of catalytic hydrodesulfurization of diesel fuels // Catalysts. 2022. Vol. 12. Iss. 11. P. 1301. https://doi.org/10.3390/catal12111301.
  22. Saha B., Vedachalam S., Paul A.K., Dalai A.K., Saxena S., Roberts W.L., et al. Microwave-assisted solvent deasphalting of heavy fuel oil and process parameters optimization // Fuel. 2023. Vol. 351. P. 128818. https://doi.org/10.1016/j.fuel.2023.128818.
  23. Uyar M., Aydın H. Production of low sulfur diesel-like fuel from crude oil wastes by pyrolytic distillation and its usage in a diesel engine // Energy. 2022. Vol. 244. Part А. P. 122683. https://doi.org/10.1016/j.energy.2021.122683.
  24. Hart A. Modern techniques to minimize catalyst deactivation due to coke deposition in catalytic upgrading of heavy oil in situ processes // Petroleum Chemistry. 2022. Vol. 62. No. 7. P. 714–731. https://doi.org/10.1134/S0965544122020189.
  25. Houda S., Lancelot C., Blanchard P., Poinel L., Lamonier C. Oxidative desulfurization of heavy oils with high sulfur content: a review // Catalysts. 2018. Vol. 8. Iss. 9. P. 344. https://doi.org/10.3390/catal8090344.
  26. Haruna A., Merican Z.M.A., Musa S.G., Abubakar S. Sulfur removal technologies from fuel oil for safe and sustainable environment // Fuel. 2022. Vol. 329. P. 125370. https://doi.org/10.1016/j.fuel.2022.125370.
  27. Хайрутдинов И.Р., Тихонов А.А., Ахметов М.М. Перспектива расширения сырьевой базы для получения игольчатого кокса // Башкирский химический журнал. 2011. Т. 18. № 3. С. 103–111. EDN: OOUXGH.
  28. Обухова А.В, Кузнецова Л.И., Каменский Е.С., Кузнецов П.Н., Авид Б. Получение игольчатого кокса из нефтяного и угольного сырья // Журнал Сибирского федерального университета. Серия: Техника и технологии. 2024. Т. 17. № 6. С. 688–711. EDN: BBGDAM.
  29. Zhang Zhichen, Chen Kun, Liu Dong, Lou Bin, Li Min, Guo Shuhai, et al. Comparative study of the carbonization process and structural evolution during needle coke preparation from petroleum and coal feedstock // Journal of Analytical and Applied Pyrolysis. 2021. Vol. 156. P. 105097. https://doi.org/10.1016/j.jaap.2021.105097.
  30. Ахметов М.М. Получение малосернистых коксов из сернистых нефтей: монография. Уфа: АО «Институт нефтехимпереработки», 2010. 180 с.
  31. Al-Haj-Ibrahim H., Morsi B.I. Desulfurization of petroleum coke: a review // Industrial and Engineering Chemistry Research. 1992. Vol. 31. No. 8. P. 1835–1840. https://doi.org/10.1021/ie00008a001.
  32. Luo Pen, Chen Zhengjie, Chen Xiuhua, Ma Wenhui. Deep desulfurization of high-sulfur petroleum coke via alkali catalytic roasting combined with ultrasonic oxidation // Materials. 2024. Vol. 17. No. 11. P. 2609. https://doi.org/10.3390/ma17112609.
  33. Li Fu-Min, Hua Ming-Qing, Wei Yan-Chen, Liu Ji-Xing, Gong Jia-Hong, Wang Chao, et al. Insight into the oxidative desulfurization of high-sulfur petroleum coke under mild conditions: a journey of vanadium-substituted Dawson-type phosphotungstic acid // Petroleum Science. 2021. Vol. 18. No. 3. P. 983–993. https://doi.org/10.1007/s12182-021-00553-2.
  34. Gong Jiahong, Xu Huanhuan, Liu Jixing, Liu Hui, Hua Mingqing, Yang Ning, et al. Interface engineering of quaternary ammonium phosphotungstate for efficient oxidative desulfurization of high-sulfur petroleum coke // Petroleum Science and Technology. 2023. Vol. 41. No. 1. P. 86–103. https://doi.org/10.1080/10916466.2022.2032740.
  35. Hua Mingqing, Gong Jiahong, Wang Yan, Lu Shichao, Wu Peiwen, Cheng Huifang, et al. Mechanochemistry assisted oxidative desulfurization of high-sulfur petroleum coke over HPMo coupled binary deep eutectic solvent // Separation and Purification Technology. 2025. Vol. 356. Part A. P. 129882. https://doi.org/10.1016/j.seppur.2024.129882.
  36. Luo Pen, Chen Zhengjie, Chen Xiuhua, Ma Wenhui, Gan Xiaowei, Xie Rui. Study on desulfurization and modification of high-sulfur petroleum coke via reduced iron powder catalytic roasting // Journal of Environmental Chemical Engineering. 2024. Vol. 12. No. 6. P. 114860. https://doi.org/10.1016/j.jece.2024.114860.
  37. Wang Yan, Luan Hao, Gong Jiahong, Hua Mingqing, Wu Peiwen, Cheng Huifang, et al. Mechanochemical driven oxidative desulfurization of high-sulfur petroleum coke overPMoVn coupled with amide-based binary deep eutectic solvents // Chemical Engineering Science. 2025. Vol. 304. P. 121021. https://doi.org/10.1016/j.ces.2024.121021.
  38. Askari H., Khorasheh F., Soltanali S., Tayyebi S. Desulfurization of high sulfur petroleum coke by molten caustic leaching // Egyptian Journal of Petroleum. 2019. Vol. 28. Iss. 2. С. 225–231. https://doi.org/10.1016/j.ejpe.2019.04.001.
  39. Shan Jie, Huang Jie-jie, Li Jia-zhou, Li Guang, Zhao Jian-tao, Fang Yi-tian. Insight into transformation of sulfur species during KOH activation of high sulfur petroleum coke // Fuel. 2018. Vol. 215. P. 258–265. https://doi.org/10.1016/j.fuel.2017.09.117.
  40. Литвинова Т.Е., Царева А.А., Полторацкая М.Е., Рудко В.А. Механизм и термодинамика процесса сорбции этилового спирта на активированном нефтяном коксе // Записки Горного института. 2024. Т. 268. С. 625–636. EDN: YUGLTO.
  41. Xiao Jin, Zhang Yanbing, Zhong Qifan, Li Fachuang, Huang Jindi, Wang Bingjie. Reduction and desulfurization of petroleum coke in ammonia and their thermodynamics // Energy and Fuels. 2016. Vol. 30. Iss. 4. P. 3385–3391. https://doi.org/10.1021/acs.energyfuels.5b02929.
  42. Zhong Qifan, Zhang Yu, Shabnam S., Xiao Jin, Van Duin A.C.T., Mathews J.P. Reductive gaseous (H2/NH3) desulfurization and gasification of high-sulfur petroleum coke via reactive force field molecular dynamics simulations // Energy and Fuels. 2019. Vol. 33. Iss. 9. P. 8065–8075. https://doi.org/10.1021/acs.energyfuels.9b01425.
  43. Tsareva A.A., Litvinova T.E., Gapanyuk D.I., Rode L.S., Poltoratskaya M.E. Kinetic calculation of sorption of ethyl alcohol on carbon materials // Russian Journal of Physical Chemistry A. 2024. Vol. 98. Р. 421–430. https://doi.org/10.1134/S0036024424030312.
  44. Buzunov V., Mann V., Khramenko S., Johnson J. Influence of calcination temperature and sulfur level on coke properties // Light Metals / eds. A. Ratvik. Сham: Springer, 2017. P. 1151–1156. https://doi.org/10.1007/978-3-319-51541-0_138.
  45. Tomkute V., Lossius L.P., Gulbrandsen K., Frosta O.E. TeqMapping: a test developed to map the impact of baking temperatures on calcined petroleum cokes (CPC) // Light Metals / eds. L. Edwards. Сham: Springer, 2025. P. 950–958. https://doi.org/10.1007/978-3-031-80676-6_118.
  46. Гапанюк Д.И. Сорбция этилового спирта на активированном нефтяном коксе // СНК-2023: материалы LXXIII открытой Междунар. студ. науч. конф. Московского Политеха (г. Москва, 3–20 апреля 2023 г). М.: Московский политех. ун-т, 2023. С. 111–113. EDN: IKZTSW.
  47. Gao Shoulei, Xue Jilai, Lang Guanghui, Liu Rui, Bao Chongai, Wang Zhiguo, et al. Experimental study on preparation of prebake anodes with high sulfur petroleum coke desulfurized at high temperatures // Light Metals / eds. C. Chesonis. Сham: Springer, 2019. P. 1301–1309. https://doi.org/10.1007/978-3-030-05864-7_160.
  48. Edwards L.C., Neyrey K.J., Lossius L.P. A review of coke and anode desulfurization // Essential Readings in Light Metals / eds. A. Tomsett, J. Johnson. Сham: Springer, 2016. Р. 130–135. https://doi.org/10.1007/978-3-319-48200-2_18.
  49. Gao Shoulei, Xue Jilai, Lang Guanghui, Liu Rui, Bao Chongai, Wang Zhiguo, et al. Study on the calcination performance and desulfurization mechanism of petroleum cokes with different sulfur contents between 700 and 1100°C // Light Metals / eds. O. Martin. Сham: Springer, 2018. P. 1179–1187. https://doi.org/10.1007/978-3-319-72284-9_154.
  50. Yu Xin, Yu Dunxi, Yu Ge, Liu Fangqi, Han Jingkun, Wu Jianqun, et al. Temperature-resolved evolution and speciation of sulfur during pyrolysis of a high-sulfur petroleum coke // Fuel. 2021. Vol. 295. P. 120609. https://doi.org/10.1016/j.fuel.2021.120609.
  51. Zhong Qifan, Mao Qiuyun, Xiao Jin, Van Duin A., Mathews J.P. Sulfur removal from petroleum coke during high-temperature pyrolysis. Analysis from TG-MS data and ReaxFF simulations // Journal of Analytical and Applied Pyrolysis. 2018. Vol. 132. P. 134–142. https://doi.org/10.1016/j.jaap.2018.03.007.
  52. Gao Shoulei, Xue Jilai, Lang Guanghui, Liu Rui, Bao Chongai, Wang Zhiguo, et al. Study on the property and desulfurization mechanisms of petroleum cokes with different sulfur contents from 1200 to 2800 °C // Light Metals / eds. O. Martin. Сham: Springer, 2018. P. 1303–1313. https://doi.org/10.1007/978-3-319-72284-9_171.
  53. Edwards L., Harp K., Kuhnt C. Use of thermally desulfurized shaft CPC for anode production // Light Metals / eds. A. Ratvik. Сham: Springer, 2017. P. 1173–1181. https://doi.org/10.1007/978-3-319-51541-0_141.
  54. Tripathi N., Singh R.S., Hills C.D. Microbial removal of sulphur from petroleum coke (petcoke) // Fuel. 2019. Vol. 235. P. 1501–1505. https://doi.org/10.1016/j.fuel.2018.08.072.
  55. Koyunoğlu C., Karaca H. Microbial desulphurisation of coal: a review // International Journal of Sustainable Energy. 2023. Vol. 42. Iss. 1. P. 1–24. https://doi.org/10.1080/14786451.2023.2167998.
  56. Li Xin, Yang Fuqiang, Zhao Jiale, Ge Fanliang. Mapping the knowledge domain of microbial desulfurization application in fuels and ores for sustainable industry // Environmental Science and Pollution Research. 2023. Vol. 30. Iss. 53. P. 113151–113174. https://doi.org/10.1007/s11356-023-30236-x.
  57. Zhang Tong, Zhang Jintao, Wang Zhi, Liu Junhao, Qian Guoyu, Wang Dong, et al. Review of electrochemical oxidation desulfurization for fuels and minerals // Fuel. 2021. Vol. 305. P. 121562. https://doi.org/10.1016/j.fuel.2021.121562.
  58. Chen Zhengjie, Ma Wenhui, Wei Kuixian, Wu Jijun, Li Shaoyuan, Zhang Cong, et al. Detailed vacuum-assisted desulfurization of high-sulfur petroleum coke // Separation and Purification Technology. 2017. Vol. 175. P. 115–121. https://doi.org/10.1016/j.seppur.2016.11.035.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».