Temperature calculation of soil foundation in geotechnical software packages
- Autores: Skvortsov D.S.1, Sinitski A.I.2, Zhajsambaev E.A.1
-
Afiliações:
- Industrial University of Tyumen
- Scientific Center for Arctic Studies
- Edição: Nº 3 (2024)
- Páginas: 54-63
- Seção: CONSTRUCTION
- URL: https://journals.rcsi.science/2782-232X/article/view/317563
- DOI: https://doi.org/10.31660/2782-232X-2024-3-54-63
- ID: 317563
Citar
Texto integral
Resumo
Sobre autores
D. Skvortsov
Industrial University of Tyumen
Email: tmn.skvorcov@mail.ru
A. Sinitski
Scientific Center for Arctic Studies
Email: AISinitskii@yanao.ru
E. Zhajsambaev
Industrial University of Tyumen
Email: zhajsambaevea@tyuiu.ru
Bibliografia
Марахтанов В. П. Криогенные деформации свайного основания трубопроводов. Трубопроводный транспорт: теория и практика. 2013;(5):18–22. Режим доступа: https://www.elibrary.ru/item.asp?id=23502631. Пазиняк В. В., Кутвицкая Н. Б., Минкин М. А. Экспериментальные исследования устойчивости трубопроводов на крупномасштабной грунтовой модели. Криосфера земли. 2006;X(1):51–55. Режим доступа: https://earthcryosphere.ru/archive/2006_1/07.Pazinyak_1_2006.pdf. Рекомендации по проектированию и расчету малозаглубленных фундаментов на пучинистых грунтах. Москва: Ордена Трудового Красного знамения НИИОСП им. Н. М. Герсеванова Госстроя СССР; 1985. 61 с. Режим доступа: https://docs.cntd.ru/document/1200074992. Бай В. Ф., Мальцева Т. В., Набоков А. В., Воронцов В. В., Минаева А. В. Теоретические предпосылки расчета песчаных армированных массивов в слабых глинистых грунтах. Известия высших учебных заведений. Нефть и газ. 2011;(1):102–106. Режим доступа: https://elibrary.ru/item.asp?id=16452831. Мальцев Л. Е., Мальцева Т. В., Минаева А. В., Набоков А. В. Определение перемещений армирующего элемента песчаного цилиндра. Научно-технический вестник Поволжья. 2012;(2):234–238. Режим доступа: https://elibrary.ru/item.asp?id=17779954. Мальцева Т. В., Набоков А. В., Черных А. В. Применение песчаных армированных свай при строительстве малоэтажных зданий. Вестник Тюменского государственного архитектурно-строительного университета. 2015;(2):34–39. Режим доступа: https://elibrary.ru/item.asp?id=24389410. Бай В. Ф., Краев А. Н. Исследование работы песчаной армированной подушки с криволинейной подошвой в условиях слабых грунтов. Вестник гражданских инженеров. 2014;(3):107–110. Режим доступа: https://www.elibrary.ru/item.asp?id=21813073. Тажигулов А. А. Песчаные подушки с геотекстилем на слабых водонасыщенных глинистых грунтах: автореф. дис. канд. техн. наук. Москва: Московский государственный строительный университет; 1993. 20 с. Татьянникова Д. А., Пономарев А. Б. Модельные штамповые испытания по исследованию работы армированных фундаментных подушек под нагрузкой. В сб.: Инженерно-геотехнические изыскания, проектирование и строительство оснований, фундаментов и подземных сооружений. Санкт-Петербург: Санкт-Петербургский государственный архитектурно-строительный университет; 2017. С. 219–223. Мирсаяпов И. Т., Шарафутдинов Р. А. Несущая способность и осадки грунтового основания армированного вертикальными и горизонтальными элементами. Известия Казанского государственного архитектурно-строительного университета. 2016;(2):111–116. Режим доступа: https://www.elibrary.ru/download/elibrary_26455345_84235665.pdf. Гришина А. С. Мащенко А. В., Пономарев А. Б. Результаты исследований прочностных характеристик глинистых грунтов, армированных различными геосинтетическими материалами. Вестник Пермского национального исследовательского политехнического университета. Прикладная экология. Урбанистика. 2015;(4):9–21. Режим доступа: https://vestnik.pstu.ru/urbanistic/archives/?id=&folder_id=5274. Джоунс К. Д. Сооружения из армированного грунта. Мельник В. Г. (ред.). Москва: Стройиздат; 1989. 268 с. Хрусталев Л. Н. Основы геотехники в криолитозоне. Москва: ИНФРА-М; 2019. 543 с. https://doi.org/10.12737/textbook_5c6142a7282862.58234241 Павлов А. Р., Матвеева М. В. Итерационная разностная схема для задачи тепломассопереноса при промерзании грунтов. Вестник Самарского государственного университета. Серия естественнонаучная. 2007;(6):242–252. Режим доступа: http://vestniksamgu.ssau.ru/est/2007web6/math/2007560310.pdf. Кроник Я. А., Демин И. И. Расчеты температурных полей и напряженно-деформированного состояния грунтовых сооружений методом конечных элементов. Москва: МИСИ; 1982. 102 с. 16. Роман Л. Т. Механика мерзлых грунтов. Москва: Наука/Интерпериодика; 2002. 425 с. Макаров А. С., Краев А. Н., Твердохлеб С. А., Шанхоев З. Ш. Результаты экспериментального исследования и численного моделирования плоскопараллельного промораживания образца грунта в экспериментальном стенде. Интернет-журнал «Транспортные сооружения». 2017;4(4):09TS417. http://dx.doi.org/10.15862/09TS417 Сахаров И. И., Парамонов В. Н., Парамонов М. В., Игошин М. Е. Деформации морозного пучения и оттаивания грунтов при работе и повреждении сезонно-охлаждающих устройств. Промышленное и гражданское строительство. 2017;(12):23–30. Режим доступа: https://elibrary.ru/item.asp?id=32278886. Кудрявцев С. А., Сахаров И. И., Парамонов В. Н. Промерзание и оттаивание грунтов. Санкт-Петербург: Геореконструкция; 2014. 247 с. Режим доступа: http://geo-bookstore.ru/files/KudrSahPar.pdf. Мельников А. В. Влияние теплоизоляции фундаментов на изменение температурного режима сезоннопромерзающего основания в районе глубокого сезонного промерзания. Вестник гражданских инженеров. 2012;(6):77–83. Режим доступа: https://elibrary.ru/item.asp?id=20153977. Осокин Н. И., Сосновский А. В., Накалов П. Р., Ненашев С. В. Термическое сопротивление снежного покрова и его влияние на промерзание грунта. Лед и Снег. 2013;(1):93–103. Режим доступа: https://ice-snow.igras.ru/jour/article/view/89.
Arquivos suplementares
