Advantages of using textile-reinforced concrete in cantilever structures
- Authors: Borisov N.O.1, Stolyarov O.N.1
-
Affiliations:
- Peter the Great St. Petersburg Polytechnic University
- Issue: Vol 5, No 1 (2025)
- Pages: 81-92
- Section: CONSTRUCTION
- URL: https://journals.rcsi.science/2782-232X/article/view/308453
- DOI: https://doi.org/10.31660/2782-232X-2025-1-81-92
- EDN: https://elibrary.ru/QMXDMF
- ID: 308453
Cite item
Full Text
Abstract
Textile reinforcement of concrete structures is promising trend in modern construction. These structures are lightweight, strong, stable, and require fewer materials. However, the use of textile-reinforced concrete in cantilever structures has not been previously studied. The authors designed and manufactured prototypes of lightweight textile-reinforced concrete cantilever coverings. The prototypes underwent strength testing in the laboratory. In addition, finite element modelling was performed to analyze the stress-stain state of the structures. Tre results showed that the maximum failure load of the prototype was 400 N, equivalent to a stress of 4.08 MPa, exceeding the strength of B20 class concrete by 1.9-2.4 times. The effectiveness of textile reinforcement was demonstrated under critical loading conditions, and the residual strength of the structure provided stability after the concrete matrix failure. The prototype could form the basis of commercial solutions. This technology is promising for use in regions with stringent structural reliability requirements, including seismically active zones.
About the authors
N. O. Borisov
Peter the Great St. Petersburg Polytechnic University
O. N. Stolyarov
Peter the Great St. Petersburg Polytechnic University
References
- Kirsanov A. I., Stolyarov O. N. Mechanical properties of synthetic fibers applied to concrete reinforcement. Magazine of Civil Engineering. 2018;(4):15–23. https://doi.org/10.18720/MCE.80.2
- Haas R., Quadflieg T., Stolyarov O. Analysis of reinforcement efficiency and microscopic characterization of glass and carbon roving geometry in prestressed concrete composites. Journal of Composite Materials. 2021;55(23):3293– 3305. https://doi.org/10.1177/00219983211013382
- Stolyarov O., Quadflieg T., Gries T. Characterization of shear behavior of warp-knitted fabrics applied to composite reinforcement. The Journal of the Textile Institute. 2017;108(1):89–94. https://doi.org/10.1080/00405000.2016.1153876
- Quadflieg T., Stolyarov O., Gries T. Influence of the fabric construction parameters and roving type on the tensile property retention of high-performance rovings in warp-knitted reinforced fabrics and cement-based composites. Journal of Industrial Textiles. 2017;47(4):453–471. https://doi.org/10.1177/1528083716652831
- Lu W., Lee W. M. W., Xue F., Xu J. Revisiting the effects of prefabrication on construction waste minimization: a quantitative study using bigger data. Resources, Conservation and Recycling. 2021;170:105579. https://doi.org/10.1016/j.resconrec.2021.105579
- Beckmann B., Bielak Ja., Bosbach S., Scheerer S., Schmidt Ch., Hegger J., Curbach M. Collaborative research on carbon reinforced concrete structures in the CRC/TRR 280 project. Civil Engineering Design. 2021;3(3):99–109. https://doi.org/10.1002/cend.202100017
- Janani R., Lalithambigai N. A critical literature review on minimization of material wastes in construction projects. Materials Today: Proceedings. 2021;37(2):3061–3065. https://doi.org/10.1016/j.matpr.2020.09.011
- Kortmann J. Verfahrenstechnische Untersuchungen zur Recyclingfähigkeit von Carbonbeton = Process engineering investigations into the recyclability of carbon concrete. Springer Vieweg Wiesbaden; 2020. 249 p. (In Germ.) URL: https://www.sci-hub.ru/10.1007/978-3-658-30125-5. http://dx.doi.org/10.1007/978-3-658-30125-5
- Rempel S., Will N., Hegger J., Beul P. Filigrane Bauwerke aus Textilbeton = Filigree structures made of textile-reinforced concrete. Betonund Stahlbetonbau = Concrete and reinforced concrete construction. 2015;110(S1):83–93. (In Germ.) http://dx.doi.org/10.1002/best.201400111
- Bielak J., Schöneberg J., Classen M., Hegger J. Shear capacity of continuous concrete slabs with CFRP reinforcement. Construction and Building Materials. 2022;320:126117. https://doi.org/10.1016/j.conbuildmat.2021.126117
- Zhang M., Deng M. Tensile behavior of textile-reinforced composites made of highly ductile fiber-reinforced concrete and carbon textiles. Journal of Building Engineering. 2022;57:104824. https://doi.org/10.1016/j.jobe.2022.104824
- Stark A., Classen M., Hegger J. Bond behaviour of CFRP tendons in UHPFRC. Engineering Structures. 2019;178(7):148– 161. http://dx.doi.org/10.1016/j.engstruct.2018.10.002
- Kalthoff M., Raupach M., Matschei T. Extrusion and subsequent transformation of textile‐reinforced mortar components – requirements on the textile, mortar and process parameters with a laboratory mortar extruder (LabMorTex). Buildings. 2022;12(6):726. https://doi.org/10.3390/buildings12060726
- Kalthoff M., Raupach M., Matschei T. Investigation into the integration of impregnated glass and carbon textiles in a laboratory mortar extruder (LabMorTex). Materials. 2021;14(23):7406. https://doi.org/10.3390/ma14237406
- Alfani R., Guerrini G. L. Rheological test methods for the characterization of extrudable cement-based materials – A review. Materials and Structures. 2005;38(2):239–247. https://doi.org/10.1007/bf02479349
- Perrot A., Rangeard D., Nerella V. N., Mechtcherine V. Extrusion of cement‐based materials – An overview. RILEM Technical Letters. 2018;3:91–97. http://dx.doi.org/10.21809/rilemtechlett.2018.75
- Li Z., Zhou X. Manufacturing cement-based materials and building products via extrusion: from laboratory to factory. ICE Proceedings Civil Engineering. 2015;168(6):11–16. http://dx.doi.org/10.1680/cien.14.00065
- Kalthoff M., Raupach M., Matschei T. Investigation of rheological test methods for the suitability of mortars for manufacturing of textile-reinforced concrete using a laboratory mortar extruder (LabMorTex). Construction Materials. 2022;2(4):217–233. https://doi.org/10.3390/constrmater2040015
- Du W., Liu Q., Zhou Z., Uddin N. Experimental investigation of innovative composite folded thin cylindrical concrete shell structures. Thin-Walled Structures. 2019;137:224–230. https://doi.org/10.1016/j.tws.2019.01.014
- Chudoba R., van der Woerd J., Schmerl M., Hegger J. ORICRETE: Modeling support for design and manufacturing of folded concrete structures. Advances in Engineering Software. 2014;72:119–127. https://doi.org/10.1016/j.advengsoft.2013.05.004
- Mechtcherine V., Bos F. P., Perrot A., Leal da Silva W. R., Nerella V. N., Fataei S. et al. Extrusion-based additive manufacturing with cement-based materials – Production steps, processes, and their underlying physics: A review. Cement and Concrete Research. 2020;132:106037. https://doi.org/10.1016/j.cemconres.2020.106037
- Mechtcherine V., Nerella V. N., Will F., Näther M., Otto J., Krause M. Large-scale digital concrete construction – CONPrint3D concept for on-site, monolithic 3D-printing. Automation in Construction. 2019;107(3):102933. https://doi.org/10.1016/j.autcon.2019.102933
- Buswell R. A., Leal de Silva W. R., Jones S. Z., Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research. 2018;112:37–49. http://dx.doi.org/10.1016/j.cemconres.2018.05.006
- Classen M., Ungermann J., Sharma R. Additive manufacturing of reinforced concrete – Development of a 3D printing technology for cementitious composites with metallic reinforcement. Applied Sciences. 2020;10(11):3791. https://doi.org/10.3390/app10113791
- Meurer M. Classen M. Mechanical properties of hardened 3D printed concretes and mortars-development of a consistent experimental characterization strategy. Materials. 2021;14(4):752. https://doi.org/10.3390/ma14040752
- Lewis W. J. Chapter 6. Tension cables in suspension bridges. A case of form-finding. In: Tension Structures. 2nd edition. ICE Publishing; 2017. P. 101–133. https://doi.org/10.1680/tsfab.61736.101
- Smarslik M., Ahrens M. A., Mark P. Toward holistic tensionor compression-biased structural designs using topology optimization. Engineering Structures. 2019;199(8):109632. http://dx.doi.org/10.1016/j.engstruct.2019.109632
- Stark A., Classen M., Knorrek C., Camps B., Hegger J. Sandwich panels with folded plate and doubly curved UHPFRC facings. Structural Concrete. 2018;19(6):1851–1861. http://dx.doi.org/10.1002/suco.201700288
- Hegger J., Herbrand M., Stark A., Classen M. Betonbau der Zukunft: leicht, filigran und nachhaltig/The future of structural concrete: light, filigree and sustainable. Bauingenieur = Civil Engineer. 2015;90(07-08):337–344. (In Germ.) http://dx.doi.org/10.37544/0005-6650-2015-07-08-61
- Liew A., López D. L., Van Mele T., Block Ph. Design, fabrication and testing of a prototype, thin-vaulted, unreinforced concrete floor. Engineering Structures. 2017;137:323–335. http://dx.doi.org/10.1016/j.engstruct.2017.01.075
Supplementary files
