Reagent-based treatment of domestic wastewater for ammonium removal in decentralized Arctic settlements
- Authors: Fugaeva A.M.1, Vialkova E.I.1
-
Affiliations:
- Industrial University of Tyumen
- Issue: Vol 5, No 1 (2025)
- Pages: 67-80
- Section: CONSTRUCTION
- URL: https://journals.rcsi.science/2782-232X/article/view/308452
- DOI: https://doi.org/10.31660/2782-232X-2025-1-67-80
- EDN: https://elibrary.ru/QMMCRA
- ID: 308452
Cite item
Full Text
Abstract
Decentralized Arctic settlements are equipped with modern water supply systems, yet they increasingly face the challenge of collecting and treating domestic wastewater. The study examined physical and chemical methods for treating domestic wastewater, similar in composition to wastewater from small northern settlements, with the goal of replacing the often inefficient biological treatment step, especially for organic substances. Wastewater samples at normal (18–22 °С) and extreme (3–6 °С) temperatures were treated in the laboratory using various technological schemes. As a result, the authors propose the most effective technological scheme for treating domestic wastewater in remote Arctic settlements, which includes the following stages: pre-aeration, sedimentation with coagulation and flocculation, chemical oxidation and struvite precipitation, and mechanical and sorption filtration. It was found that this technology is largely independent of water temperature and suitable for domestic wastewater with temperatures ranging from 3 to 22 °С. The implementation of this scheme reduced the concentration of ammonium ions by 96.5 %, suspended solids by 98 %, and chemical oxygen demand by 91 %. The proposed wastewater treatment scheme will simplify the operation of treatment plants in challenging Arctic conditions and enable their operation in automatic mode.
About the authors
A. M. Fugaeva
Industrial University of Tyumen
E. I. Vialkova
Industrial University of Tyumen
References
- Вялкова Е. И., Максимова С. В., Землянова М. В., Воротникова А. В., Максимов Л. И. Водоотведение объектов инфраструктуры нефтегазовых месторождений Западной Сибири. Тюмень: Тюменский индустриальный университет; 2017. 175 с.
- Руфова А. А., Татаринова А. В. Антропогенное влияние на гидрохимическое и гидробиологическое состояние поверхностных вод северных городов (на примере г. Якутска). Современные проблемы науки и образования. 2015;(4):503. URL: https://science-education.ru/ru/article/view?id=20468.
- Фугаева А. М., Воронов А. А., Вялкова Е. И. Очистка бытовых сточных вод малых населенных пунктов. В сб.: Современные проблемы земельно-имущественных отношений, урбанизации территории и формирования комфортной городской среды: сборник докладов Международной научно-практической конференции, Тюмень, 2023. Тюмень: Тюменский индустриальный университет, 2023. С. 443–450. URL: https://elibrary.ru/item. asp?id=55923907.
- Lobanov S. A., Poilov V. Z. Treatment of wastewater to remove ammonium ions by precipitation. Russian Journal of Applied Chemistry. 2006;79(9):1473–1477. https://doi.org/10.1134/S1070427206090151
- Mitani Y., Sakai Y., Mishina F., Ishiduka S. Struvite recovery from wastewater having low phosphate concentration. Journal of Water and Environment Technology. 2003;1(1):13–18. https://doi.org/10.2965/jwet.2003.13
- Sea Y. F., Chua A. S. M., Ngoh G. Ch., Rabuni M. F. Integrated struvite precipitation and fenton oxidation for nutrient recovery and refractory organic removal in palm oil mill effluent. Water. 2024;16(13):1788. https://doi.org/10.3390/w16131788
- Glushchenko E., Vialkova E., Sidorenko O., Fugaeva A. Physical-chemical wastewater treatment in Arctic conditions. E3S Web of Conferences. 2020;157:02014. https://doi.org/10.1051/e3sconf/202015702014
- Hendriksen K., Hoffmann B. Greenlandic water and sanitation systems – identifying system constellation and challenges. Environmental Science and Pollution Research. 2018;25(33):32964–32974. https://doi.org/10.1007/s11356-017-9556-6
- Мочалов И. П. Очистка и обеззараживание сточных вод малых населенных мест (в условиях Крайнего Севера). 2-е изд., доп. и перераб. Москва: ДАР/ВОДГЕО; 2016. 466 с.
- Зверева С. М., Бартова Л. В. Развитие технологии очистки сточных вод малых населенных пунктов. Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. 2017;8(2):64–74. https://doi.org/10.15593/2224-9826/2017.2.06
- Гришин Б. М., Кошев А. Н., Ласьков Н. Н., Бикунова М. В. Удаление соединений азота из сточных вод с применением окислителей. Региональная архитектура и строительство. 2013;(2):91–97.
- Андреев С. Ю., Исаева А. М., Кочергин А. С. Разработка и исследование комбинированной технологии очистки сточных вод малых населенных пунктов. Пенза: Пензенский государственный университет архитектуры и строительства; 2015. 120 с.
- Ragush C., Schmidt J., Krkošek W. H., Gagnon G. A., Hansen L. T., Jamieson R. Performance of municipal waste stabilization ponds in the Canadian Arctic. Ecological Engineering. 2015;83(12):413–421. https://doi.org/10.1016/j.ecoleng.2015.07.008
- Koivunen J., Heinonen-Tanski H. Peracetic acid (PAA) disinfection of primary, secondary and tertiary treated municipal wastewaters. Water Research. 2005;39(18):4445–4453 https://doi.org/10.1016/j.watres.2005.08.016
- Chhetri R. K., Klupsch E., Andersen H. R., Jensen P. E. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection. Environmental Science and Pollution Research. 2018;25:32851–32859. https://doi.org/10.1007/s11356-017-8585-5
- Wu T., Englehardt J. D., Guo T., Gassie L. W., Dotson A. D. Applicability of energy-positive net-zero water management in Alaska: technology status and case study. Environmental Science and Pollution Research. 2018;25:33025–33037. https://doi.org/10.1007/s11356-017-0743-2
- Вялкова Е. И., Глущенко Е. С., Велижанина Т. С., Осипова Е. Ю. Анализ физико-химических методов очистки бытовых сточных вод северных населенных пунктов. Вестник Томского государственного архитектурно-строительного университета. 2020;22(1):152–163. https://doi.org/10.31675/1607-1859-2020-22-1-152-163
- Lado Ribeiro A. R., Rodríguez-Chueca J., Giannakis S. Urban and industrial wastewater disinfection and decontamination by advanced oxidation processes (AOPs): Current issues and future trends. Water. 2021;13(4):560. http://dx.doi.org/10.3390/w13040560
- Небукина И. А., Смирнова Н. Н., Рвачев И. С. Влияние органических соединений на эффективность удаления ионов аммония из сточных вод методом окисления. Вопросы современной науки и практики. Университет им. В. И. Вернадского. 2015;(2):28–33. https://doi.org/10.17277/voprosy.2015.02.pp.028-033
- Anusuyadevi P. R., Kumar D. Ja. P., Omkaara Jyothi A. D. H. V., Patwardhan N. S., Janani V., Mol A. Towards viable ecofriendly local treatment of blackwater in sparsely populated regions. Water. 2023;15(3):542. https://doi.org/10.3390/w15030542
- Barros A., Vecino X., Reig M., Cortina J. L. Coagulation and flocculation optimization process applied to the sidestream of an urban wastewater treatment plant. Water. 2022;14(24):4024. https://doi.org/10.3390/w14244024
- Muscarella S. M., Laudicina V. A., Badalucco L., Conte P., Mannina G. Ammonium recovery from synthetic wastewaters by using zeolitic mixtures: a desorption batch-study. Water. 2023;15(19):3479. https://doi.org/10.3390/w15193479
Supplementary files
