Effect of continuous and modulated ultrasound on fish neurons.
- Authors: Pashovkin T.N.1, Sadikova D.G.1
-
Affiliations:
- Issue: No 1 (2024)
- Pages: 41-54
- Section: Articles
- URL: https://journals.rcsi.science/2730-0560/article/view/362499
- DOI: https://doi.org/10.7256/2730-0560.2024.1.71004
- EDN: https://elibrary.ru/QYEYTI
- ID: 362499
Cite item
Full Text
Abstract
Currently, transcranial ultrasound stimulation (TUS) is being intensively developed as a new non-invasive method of neuromodulation. A convenient model for demonstrating ultrasonic neuromodulation is the nervous system of fish. Experiments have been carried out on Goldfishes. We have recorded general swimming reaction and turning reaction of fishes in the special chamber which bottom had been divided into sectors. We observed decrease of general swimming reaction and turning reaction after influence of continuous ultrasonic waves of therapeutic intensities (f = 0.88 MHz), when intensity was more than 0.7 W/cm2, and increase of these responses at intensities less than 0.1 W/cm2. Application of modulated ultrasonic fields as an acting factor produced changes of activity of fishes dependent on a modulating frequency. The action spectra have been received using an amplitude modulation (AM) of low frequency. This spectra reflect the work of the whole brain (tests of change of a general swimming reaction of fishes), and the work of identified Mauthner’s neuron, that is responsible for turning response of fishes. The action spectrum for Mauthner’s neuron is more expressed and contains three kinds of frequencies by the action on fishes activity: frequency of activation (8 Hz), partially depressing (6, 10 Hz) and neutral (3, 7, 9 Hz). Spectra are received at equienergy action АМ of ultrasonic sound irrespective of a modulating frequency (porosity = 2) and spatial average and temporal average intensities of 0.35 W/cm2. From an action spectrum we can conclude, that on one modulating frequency effects of a carrier frequency are relaxed, and on others strengthen. This approach can find application in ultrasonic therapy when it is necessary to make ultrasonic action more effective and to decrease potential hazard of action due to the cavity action.
About the authors
Timofei Nikolaevich Pashovkin
Email: pashovkin@mail.ru
ORCID iD: 0000-0001-9697-9230
Diana Gablel'fartovna Sadikova
Email: sdg7@list.ru
References
Де Денг З., Лисанби С.Х. и Петерчев А.В. Компромисс между глубиной и фокусностью электрического поля при транскраниальной магнитной стимуляции: сравнение моделирования 50 конструкций катушек // Brain Stimul. 2013. № 6. C. 1–13. doi: 10.1016/j.brs.2012.02.005. Рейнхарт Р.М.Г., Вудман Г.Ф. и Познер М.И. Улучшение долговременной памяти с помощью стимуляции настраивает зрительное внимание в одном испытании // Proc. Natl. Acad. Sci. USA. 2015. № 112. C. 625–630. doi: 10.1073/pnas.1417259112. Блэкмор Дж., Шривастава С., Саллет Дж., Батлер Ч.Р., Кливленд Р.О. Ультразвуковая нейромодуляция: обзор результатов, механизмов и безопасности // Ultrasound Med. Biol. 2019. № 45. C. 1509–1536. Харви Э.Н. Влияние звуковых волн высокой частоты на сердечную мышцу и другие раздражимые ткани // Am. J. Physiol. 2019. № 91. C. 284–290. Фрай Ф.Дж., Адес Х.В., Фрай У.Дж. Выработка обратимых изменений центральной нервной системы с помощью ультразвука // Science. 1958. № 127. C. 83–84. Даунс М.Е. и др. Неинвазивная стимуляция периферических нервов с помощью фокусированного ультразвука in vivo // Phys. Med. Biol. 2018. № 63. 035011–11. Муньос Ф., Ауруп К., Конофагу Э.Э., Феррера В.П. Модуляция функции и поведения мозга с помощью фокусированного ультразвука // Curr. Behav. Neurosci. Rep. 2018. № 5. C. 153–164. Камимура Х.А.С. и др. Фокусированная ультразвуковая нейромодуляция корковых и подкорковых структур головного мозга с использованием частоты 1,9 МГц // Med. Phys. 2016. № 43. C. 5730–5735. Туфаил Ю. и др. Транскраниальный импульсный ультразвук стимулирует неповрежденные цепи мозга // Neuron. 2010. № 66. C. 681–694. Фини М., Тайлер У.Дж. Транскраниальный фокусированный ультразвук: новый инструмент неинвазивной нейромодуляции // Int. Rev. Psychiatry. 2017. № 29. C. 168–177. Наор О., Крупа С., Шохам С. Ультразвуковая нейромодуляция // J. Neural Eng. 2016. № 13. 031003. Ли В., Ким Х.К., Юнг Ю., Чанг Ю.А., Сонг И.Ю., Ли Дж.Х. и др. Транскраниальная фокусированная ультразвуковая стимуляция первичной зрительной коры человека // Sci. Rep. 2016. № 6. C. 1–12. doi: 10.1038/srep34026. Ю С., Миттельштейн Д. Р., Хёрт Р. К., Лакруа Дж. и Шапиро М. Г. Сфокусированный ультразвук возбуждает кортикальные нейроны посредством механочувствительного накопления кальция и усиления ионных каналов // Nat. Commun. 2022. № 13. C. 493. doi: 10.1038/s41467-022-28040-1. Даллапиацца Р.Ф., Тимби К.Ф., Холмберг С., Гейтсман Дж., Лопес М.Б., Прайс Р.Дж. и др. Неинвазивная нейромодуляция и картирование таламуса с помощью низкоинтенсивного сфокусированного ультразвука // J. Neurosurg. 2018. № 128. C. 875–884. doi: 10.3171/2016.11.JNS16976. О С.Дж., Ли Дж.М., Ким Х.Б., Хан С., Бэ Дж.Ю., Хонг Г.С. и др. Ультразвуковая нейромодуляция через астроцитарный TRPA1 // Curr. Biol. 2019. № 29. C. 3386–3401. doi: 10.1016/j.cub.2019.08.021. Дуке М., Ли-Кубли К.А., Туфаил Ю., Магарам У., Патель Дж., Чакраборти А. и др. Соногенетический контроль клеток млекопитающих с использованием каналов А1 экзогенного транзиторного рецепторного потенциала // Nat. Commun. 2022. № 13. C. 600. doi: 10.1038/s41467-022-28205-y. Ню X., Ю К. и Хе Б. Транскраниальный сфокусированный ультразвук вызывает устойчивую синаптическую пластичность в гиппокампе крыс // Brain Stimul. 2022. № 15. C. 352–359. DOI: 0.1016/j.brs.2022.01.015. Делл’Италия Дж., Сангинетти Дж. Л., Монти М. М., Быстрицкий А., и Редженте Н. Текущее состояние потенциальных механизмов, поддерживающих сфокусированный ультразвук низкой интенсивности для нейромодуляции // Front. Hum. Neurosci. 2022. № 16. C. 1–23. doi: 10.3389/fnhum.2022.872639. Далецки Д. Механические биоэффекты ультразвука // Annu. Rev. Biomed. Eng. 2004. № 6. C. 229–248. О'Брайен-младший В.Д. Ультразвуко-биофизические механизмы // Prog. Biophys. Mol. Biol. 2007. № 93. C. 212–255. Чой Дж. Дж., Перно М., Смолл С. А., Конофагу Э. Э. Неинвазивное, транскраниальное и локализованное вскрытие гематоэнцефалического барьера с помощью фокусированного ультразвука у мышей // Ultrasound Med. Biol. 2007. № 33. C. 95–104. Туфаил Ю., Ёсихиро А., Пати С., Ли М.М., Тайлер У.Дж. Ультразвуковая нейромодуляция путем стимуляции мозга транскраниальным ультразвуком // Nat. Protoc. 2011. № 6. C. 1453–1470. Кубанек Дж., Шукла П., Дас А., Баккус С.А., Гудман М.Б. Ультразвук вызывает поведенческие реакции посредством механического воздействия на нейроны и ионные каналы в простой нервной системе // J. Neurosci. 2018. № 38. C. 3081–3091. Кубанек Дж. и др. Ультразвук модулирует токи ионных каналов // Sci. Rep. 2016. № 6. C. 24170. Прието М.Л., Фирузи К., Хури-Якуб Б.Т., Мадуке М. Активация каналов Piezo1, но не NaV1.2 ультразвуком на частоте 43 МГц // Ultrasound Med. Biol. 2018. № 44. C. 1217–1232. О С.-Дж. и др. Ультразвуковая нейромодуляция через астроцитарный TRPA1 // Curr. Biol. 2019. № 29. C. 3386–3401. д8. Тайлер У.Дж. и др. Дистанционное возбуждение нейронных цепей с помощью низкоинтенсивного низкочастотного ультразвука // PLoS One. 2008. № 3. e3511–e11. Блэкмор Д.Г., Разански Д. и Гетц Дж. Ультразвук как универсальный инструмент для краткосрочного и долгосрочного улучшения и мониторинга функций мозга // PLoS On. 2023. № 3. C.1174–1190. doi: 10.1016/j.neuron.2023.02.018. Йе Дж. и др. Ультразвуковой контроль активности нейронов посредством активации механочувствительного канала MscL // Nano Lett. 2018. № 18. C. 4148–4155. Брохон С.Г., Кэмпбелл Э.Б., Маккиннон Р. Физический механизм открытия и механочувствительности человеческого канала TRAAK K+ // Nature. 2014. № 516. C. 126–130. Мошков Д.А., Подольский И.Я., Кашапова Л.А., Тирас Н.Р., Масюк Л.Н., Музафарова Л.Н., Болотнова Г.П. Количественная характеристика двигательной активности золотых рыбок как возможный индикатор состояния маутнеровских нейронов // Ж. эволюц. биох. и физиол. 1982. № 18(2). C. 155-160. Тирас Н.Р., Мошков Д.А. Электронно-микроскопическое исследование нарушения тормозной передачи в афферентных связях маутнеровских нейронов // Цитология, 1985. № 27(1). C. 40-45. Итон Р.К., Лаванда В.А., Виланд К.М. Альтернативные нервные пути инициируют реакции быстрого старта после поражения маутнеровского нейрона у золотых рыбок // J. Comp. Physiol. 1982. № 145 (4). C. 485–496. doi: 10.1007/BF00612814. S2CID 8529312. Корн Х., Фабер Д.С. Клетка Маутнера полвека спустя: нейробиологическая модель принятия решений? // Neuron. 2005. № 47 (1). C. 13-28. doi: 10.1016/j.neuron.2005.05.019. Итон Р.К., Бомбардьери Р.А., Мейер Д.Л. Реакция испуга у костистых рыб, инициированная Маутнером // The Journal of Experimental Biology. 1977. № 66(1). C. 65–81. doi: 10.1242/jeb.66.1.65. Зоттоли С.Дж., Фабер Д.С. Клетка Маутнера: чему она нас научила? // Neuroscientist. 2000. № 6. C. 26–38. doi: 10.1177/107385840000600111
Supplementary files

