The effect of hypomagnetic conditions on the size of a person's pupil

Cover Page

Cite item

Full Text

Abstract

Earlier it was reported that hypomagnetic conditions resulting from a 100-fold decrease in geomagnetic field induction affect human cognitive processes, which was evaluated in several computer tests. Exposure in hypomagnetic conditions for 40 minutes led to a statistically significant increase in both the execution time and the number of errors in the tasks. The magnitude of this magnetic effect, averaged over 40 healthy subjects in 80 hour experiments, was about 1.7 percent. This paper describes the results of a study in which the characteristics of the state of the right eye of each subject were recorded on video, while the subject performed cognitive tests. It turned out that under hypomagnetic conditions, the pupil size increases. This effect was calculated based on the processing of a large array of data, including more than a million video frames. The average magnetic effect was about 1.6 percent. Taking into account the heterogeneity, the significance level of the effect is close to significant (0.07, ANOVA, the subjects' factor is random). Magnetic reactions recorded both for different cognitive tests and for pupil size observed simultaneously do not correlate. Approximately equal numbers of testers showed positive and negative effects in each test. Non-specific reactions to the magnetic field appear to be random.

References

  1. Johnsen, S., & Lohmann, K. J. (2008). Magnetoreception in animals. Physics today, 61(3), 29-35.
  2. Mouritsen, H. (2012). Sensory biology: Search for the compass needles. Nature, 484(7394), 320-321. doi: 10.1038/484320a
  3. Binhi, V. N., & Rubin, A. B. (2022). Theoretical Concepts in Magnetobiology after 40 Years of Research. Cells, 11(2), 1-15. doi: 10.3390/cells11020274
  4. Schüz, J., Lagorio, S., & Bersani, F. (2009). Electromagnetic fields and epidemiology: an overview inspired by the fourth course at the International School of Bioelectromagnetics. Bioelectromagnetics, 30(7), 511-524. doi: 10.1002/bem.20510
  5. Ghione, S., Del Seppia, C., Mezzasalma, L., Emdin, M., & Luschi, P. (2004). Human head exposure to a 37 Hz electromagnetic field: effects on blood pressure, somatosensory perception, and related parameters. Bioelectromagnetics, 25(3), 167-175. doi: 10.1002/bem.10180
  6. Cook, C. M., Saucier, D. M., Thomas, A. W., & Prato, F. S. (2006). Exposure to ELF magnetic and ELF-modulated radiofrequency fields: the time course of physiological and cognitive effects observed in recent studies (2001-2005). Bioelectromagnetics, 27(8), 613-627. doi: 10.1002/bem.20247
  7. Beischer, D. E. (1971). The null magnetic field as reference for the study of geomagnetic directional effects in animals and man. Ann N Y Acad Sci, 188, 324-330. doi: 10.1111/j.1749-6632.1971.tb13107.x
  8. Beischer, D. E., Miller II, E. F., & Knepton, J. C. (1967). Exposure of man to low intensity magnetic fields in a coil system (Vol. 1018): Naval Aerospace Medical Institute, Naval Aviation Medical Center.
  9. Thoss, F., & Bartsch, B. (2007). The geomagnetic field influences the sensitivity of our eyes. Vision Res, 47(8), 1036-1041. doi: 10.1016/j.visres.2007.01.022
  10. Gurfinkel, Y. I., At'kov, O. Y., Vasin, A. L., Breus, T. K., Sasonko, M. L., & Pishchalnikov, R. Y. (2016). Effect of zero magnetic field on cardiovascular system and microcirculation. Life Sci Space Res (Amst), 8, 1-7. doi: 10.1016/j.lssr.2015.11.001
  11. Гурфинкель, Ю. И., Васин, А. Л., Матвеева, Т. А., & Сасонко, М. Л. (2014). Оценка влияния гипомагнитных условий на капиллярный кровоток, артериальное давление и частоту сердечных сокращений. Авиакосмическая и экологическая медицина, 48, 24-30.
  12. Демин, А. В., Суворов, А. В., & Орлов, О. И. (2021). Особенности гемодинамики у здоровых мужчин в гипомагнитных условиях. Авиакосмическая и экологическая медицина, 55, 63-68.
  13. Kukanov, V. Y., Vasin, A. L., Demin, A. V., Schastlivtseva, D. V., Bubeev, Y. A., Suvorov, A. V., . . . Orlov, O. I. (2023). Effect of Simulated Hypomagnetic Conditions on Some Physiological Paremeters under 8-Hour Exposure. Experiment Arfa-19. Human Physiology, 49(2), 138-146.
  14. Бинги, В. Н. (2012). Два типа магнитных биологических эффектов: индивидуальный и групповой. Биофизика, 57, 338-345.
  15. Binhi, V. N., & Sarimov, R. M. (2009). Zero magnetic field effect observed in human cognitive processes. Electromagn. Biol. Med., 28(3), 310-315. doi: 10.3109/15368370903167246
  16. Саримов, Р. М., Бинги, В. Н., & Миляев, В. А. (2008). Влияние компенсации геомагнитного поля на когнитивные процессы человека. Биофизика, 53, 856-866.
  17. Wand, M.P., Jones, M.C. (1994) Kernel smoothing. CRC press.
  18. Rouaud, M. (2013) Probability, statistics and estimation. Propagation of uncertainties, 191, 1110.
  19. Sarimov, R., Alipov, E. D., & Belyaev, I. Y. (2011). Fifty hertz magnetic fields individually affect chromatin conformation in human lymphocytes: Dependence on amplitude, temperature, and initial chromatin state. Bioelectromagnetics, 32(7), 570-579. doi: 10.1002/bem.20674
  20. Schüz, J., Petters, C., Egle, U. T., Jansen, B., Kimbel, R., Letzel, S., . . . Vollrath, L. (2006). The "Mainzer EMF-Wachhund": results from a watchdog project on self-reported health complaints attributed to exposure to electromagnetic fields. Bioelectromagnetics, 27(4), 280-287. doi: 10.1002/bem.20212
  21. Binhi, V. N. (2021). Random Effects in Magnetobiology and a Way to Summarize Them. Bioelectromagnetics, 42(6), 501-515. doi: 10.1002/bem.22359
  22. Gegear, R. J., Foley, L. E., Casselman, A., & Reppert, S. M. (2010). Animal cryptochromes mediate5 magnetoreception by an unconventional photochemical mechanism. Nature, 463(7282), 804-807. doi: 10.1038/nature08719
  23. Kirschvink, J. L., Kobayashi-Kirschvink, A., Diaz-Ricci, J. C., & Kirschvink, S. J. (1992). Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics, Suppl 1, 101-113. doi: 10.1002/bem.2250130710
  24. Бинги, В. Н., & Чернавский, Д. С. (2005). Стохастический резонанс магнитосом, закрепленных в цитоскелете. Биофизика, 50, 684-688.
  25. Binhi, V. (2008). Do naturally occurring magnetic nanoparticles in the human body mediate increased risk of childhood leukaemia with EMF exposure? Int J Radiat Biol, 84(7), 569-579. doi: 10.1080/09553000802195323
  26. Binhi, V. N. (2006). Stochastic dynamics of magnetosomes and a mechanism of biological orientation in the geomagnetic field. Bioelectromagnetics, 27(1), 58-63. doi: 10.1002/bem.20178

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).