The effect of hypomagnetic conditions on the size of a person's pupil
- Authors: Sarimov R.M.1
-
Affiliations:
- Issue: No 1 (2024)
- Pages: 24-40
- Section: Articles
- URL: https://journals.rcsi.science/2730-0560/article/view/362498
- DOI: https://doi.org/10.7256/2730-0560.2024.1.43854
- EDN: https://elibrary.ru/RDFYOU
- ID: 362498
Cite item
Full Text
Abstract
Earlier it was reported that hypomagnetic conditions resulting from a 100-fold decrease in geomagnetic field induction affect human cognitive processes, which was evaluated in several computer tests. Exposure in hypomagnetic conditions for 40 minutes led to a statistically significant increase in both the execution time and the number of errors in the tasks. The magnitude of this magnetic effect, averaged over 40 healthy subjects in 80 hour experiments, was about 1.7 percent. This paper describes the results of a study in which the characteristics of the state of the right eye of each subject were recorded on video, while the subject performed cognitive tests. It turned out that under hypomagnetic conditions, the pupil size increases. This effect was calculated based on the processing of a large array of data, including more than a million video frames. The average magnetic effect was about 1.6 percent. Taking into account the heterogeneity, the significance level of the effect is close to significant (0.07, ANOVA, the subjects' factor is random). Magnetic reactions recorded both for different cognitive tests and for pupil size observed simultaneously do not correlate. Approximately equal numbers of testers showed positive and negative effects in each test. Non-specific reactions to the magnetic field appear to be random.
About the authors
Ruslan Maratovich Sarimov
Email: rusa@kapella.gpi.ru
ORCID iD: 0000-0002-2751-1615
References
Johnsen, S., & Lohmann, K. J. (2008). Magnetoreception in animals. Physics today, 61(3), 29-35. Mouritsen, H. (2012). Sensory biology: Search for the compass needles. Nature, 484(7394), 320-321. doi: 10.1038/484320a Binhi, V. N., & Rubin, A. B. (2022). Theoretical Concepts in Magnetobiology after 40 Years of Research. Cells, 11(2), 1-15. doi: 10.3390/cells11020274 Schüz, J., Lagorio, S., & Bersani, F. (2009). Electromagnetic fields and epidemiology: an overview inspired by the fourth course at the International School of Bioelectromagnetics. Bioelectromagnetics, 30(7), 511-524. doi: 10.1002/bem.20510 Ghione, S., Del Seppia, C., Mezzasalma, L., Emdin, M., & Luschi, P. (2004). Human head exposure to a 37 Hz electromagnetic field: effects on blood pressure, somatosensory perception, and related parameters. Bioelectromagnetics, 25(3), 167-175. doi: 10.1002/bem.10180 Cook, C. M., Saucier, D. M., Thomas, A. W., & Prato, F. S. (2006). Exposure to ELF magnetic and ELF-modulated radiofrequency fields: the time course of physiological and cognitive effects observed in recent studies (2001-2005). Bioelectromagnetics, 27(8), 613-627. doi: 10.1002/bem.20247 Beischer, D. E. (1971). The null magnetic field as reference for the study of geomagnetic directional effects in animals and man. Ann N Y Acad Sci, 188, 324-330. doi: 10.1111/j.1749-6632.1971.tb13107.x Beischer, D. E., Miller II, E. F., & Knepton, J. C. (1967). Exposure of man to low intensity magnetic fields in a coil system (Vol. 1018): Naval Aerospace Medical Institute, Naval Aviation Medical Center. Thoss, F., & Bartsch, B. (2007). The geomagnetic field influences the sensitivity of our eyes. Vision Res, 47(8), 1036-1041. doi: 10.1016/j.visres.2007.01.022 Gurfinkel, Y. I., At'kov, O. Y., Vasin, A. L., Breus, T. K., Sasonko, M. L., & Pishchalnikov, R. Y. (2016). Effect of zero magnetic field on cardiovascular system and microcirculation. Life Sci Space Res (Amst), 8, 1-7. doi: 10.1016/j.lssr.2015.11.001 Гурфинкель, Ю. И., Васин, А. Л., Матвеева, Т. А., & Сасонко, М. Л. (2014). Оценка влияния гипомагнитных условий на капиллярный кровоток, артериальное давление и частоту сердечных сокращений. Авиакосмическая и экологическая медицина, 48, 24-30. Демин, А. В., Суворов, А. В., & Орлов, О. И. (2021). Особенности гемодинамики у здоровых мужчин в гипомагнитных условиях. Авиакосмическая и экологическая медицина, 55, 63-68. Kukanov, V. Y., Vasin, A. L., Demin, A. V., Schastlivtseva, D. V., Bubeev, Y. A., Suvorov, A. V., . . . Orlov, O. I. (2023). Effect of Simulated Hypomagnetic Conditions on Some Physiological Paremeters under 8-Hour Exposure. Experiment Arfa-19. Human Physiology, 49(2), 138-146. Бинги, В. Н. (2012). Два типа магнитных биологических эффектов: индивидуальный и групповой. Биофизика, 57, 338-345. Binhi, V. N., & Sarimov, R. M. (2009). Zero magnetic field effect observed in human cognitive processes. Electromagn. Biol. Med., 28(3), 310-315. doi: 10.3109/15368370903167246 Саримов, Р. М., Бинги, В. Н., & Миляев, В. А. (2008). Влияние компенсации геомагнитного поля на когнитивные процессы человека. Биофизика, 53, 856-866. Wand, M.P., Jones, M.C. (1994) Kernel smoothing. CRC press. Rouaud, M. (2013) Probability, statistics and estimation. Propagation of uncertainties, 191, 1110. Sarimov, R., Alipov, E. D., & Belyaev, I. Y. (2011). Fifty hertz magnetic fields individually affect chromatin conformation in human lymphocytes: Dependence on amplitude, temperature, and initial chromatin state. Bioelectromagnetics, 32(7), 570-579. doi: 10.1002/bem.20674 Schüz, J., Petters, C., Egle, U. T., Jansen, B., Kimbel, R., Letzel, S., . . . Vollrath, L. (2006). The "Mainzer EMF-Wachhund": results from a watchdog project on self-reported health complaints attributed to exposure to electromagnetic fields. Bioelectromagnetics, 27(4), 280-287. doi: 10.1002/bem.20212 Binhi, V. N. (2021). Random Effects in Magnetobiology and a Way to Summarize Them. Bioelectromagnetics, 42(6), 501-515. doi: 10.1002/bem.22359 Gegear, R. J., Foley, L. E., Casselman, A., & Reppert, S. M. (2010). Animal cryptochromes mediate5 magnetoreception by an unconventional photochemical mechanism. Nature, 463(7282), 804-807. doi: 10.1038/nature08719 Kirschvink, J. L., Kobayashi-Kirschvink, A., Diaz-Ricci, J. C., & Kirschvink, S. J. (1992). Magnetite in human tissues: a mechanism for the biological effects of weak ELF magnetic fields. Bioelectromagnetics, Suppl 1, 101-113. doi: 10.1002/bem.2250130710 Бинги, В. Н., & Чернавский, Д. С. (2005). Стохастический резонанс магнитосом, закрепленных в цитоскелете. Биофизика, 50, 684-688. Binhi, V. (2008). Do naturally occurring magnetic nanoparticles in the human body mediate increased risk of childhood leukaemia with EMF exposure? Int J Radiat Biol, 84(7), 569-579. doi: 10.1080/09553000802195323 Binhi, V. N. (2006). Stochastic dynamics of magnetosomes and a mechanism of biological orientation in the geomagnetic field. Bioelectromagnetics, 27(1), 58-63. doi: 10.1002/bem.20178
Supplementary files

