О квантовой природе магнитных явлений в биологии
- Авторы: Бинги В.Н.1, Рубин А.Б.2
-
Учреждения:
- ФГБУ «Федеральный научно-клинический центр космической медицины» ФМБА России
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: № 1 (2023)
- Страницы: 44-73
- Раздел: Статьи
- URL: https://journals.rcsi.science/2730-0560/article/view/362482
- DOI: https://doi.org/10.7256/2730-0560.2023.1.40435
- EDN: https://elibrary.ru/SVLAQR
- ID: 362482
Цитировать
Полный текст
Аннотация
Об авторах
Владимир Николаевич Бинги
ФГБУ «Федеральный научно-клинический центр космической медицины» ФМБА России
Email: vnbin@mail.ru
ORCID iD: 0000-0003-1341-9591
ведущий научный сотрудник;
Андрей Борисович Рубин
Московский государственный университет им. М.В. Ломоносова
Email: rubin@biophys.msu.ru
заведующий кафедрой, акад. РАН;
Список литературы
von Middendorff, A. T. "em"Die Isepiptesen Russlands"/em". Kaiserlichen Akademie der Wissenschaften, 1855. Schott, H. Zur Geschichte der Elektrotherapie und ihrer Beziehung zum Heilmagnetismus. In Naturheilverfahren und Unkonventionelle Medizinische Richtunge (Ed. V. Fialka und andere) (Springer, 1996). Холодов, Ю. А. "em"Магнетизм в биологии"/em". (Наука, 1970). Холодов, Ю. А. "em"Минуя органы чувств?"/em" (Знание, 1991). Пресман, А. С. Действие микроволн на живые организмы и биологические структуры. Успехи Физических Наук 86, 263–302 (1965). Webb, S. J., Dodds, D. E. Microwave inhibition of bacterial growth. Nature 218, 374–375 (1968). Девятков, Н. Д. Влияние электромагнитного излучения миллиметрового диапазона длин волн на биологические объекты. Успехи Физических Наук 110, 453–454 (1973). Тамбиев, А. Х., Кирикова, Н. Н., Бецкий, О. В., Гуляев, Ю. В. "em"Миллиметровые волны и фотосинтезирующие организмы"/em". (Радиотехника, 2003). Belpomme, D., Hardell, L., Belyaev, I., Burgio, E., Carpenter, D. O. Thermal and non-thermal health effects of low intensity non-ionizing radiation: An international perspective. Environmental Pollution 242, 643–658 (2018). Чуян, Е. Н., Джелдубаева, Э. Р. "em"Низкоинтенсивное миллиметровое излучение: Нейроиммуноэндокринные механизмы адаптационных реакций"/em". (ИТ АРИАЛ, 2020). Пресман, А. С. "em"Электромагнитные поля и живая природа"/em". (Hаука, 1968). Аникин, В. М. Магнитобиология и магнитотерапия: Кармиловский период. Гетеромагнитная Микроэлектроника 131–140 (2016). Moulder, J. E. The electric and magnetic fields research and public information dissemination (EMF-RAPID) program. Radiation Research 153, 613–616 (2000). IARC. "em"IARC monographs on the evaluation of carcinogenic risks to humans, vol. 80. Non-ionizing radiation, part 1: Static and extremely low-frequency (ELF) electric and magnetic fields"/em". (IARC Press, 2002). Huss, A., Peters, S., Vermeulen, R. Occupational exposure to extremely low-frequency magnetic fields and the risk of ALS: A systematic review and meta-analysis. Bioelectromagnetics 39, 156–163 (2018). Miller, A. B., Morgan, L. L., Udasin, I., Davis, D. L. Cancer epidemiology update, following the 2011 IARC evaluation of radiofrequency electromagnetic fields (Monograph 102). Environmental Research 167, 673–683 (2018). Li, D.-K., Chen, H., Ferber, J. R., Odouli, R., Quesenberry, Ch. Exposure to magnetic field non-ionizing radiation and the risk of miscarriage: A prospective cohort study. Scientific Reports 7, 17541 (2017). Belyaev, I., Dean, A., Eger, H., Hubmann, G., Jandrisovits, R., Kern, M., et al. EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. Reviews on Environmental Health 31, 363–397 (2016). "em"Environmental health criteria 238. Extremely low frequency fields"/em". (World Health Organization, 2007). International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time-varying, electric, magnetic and electromagnetic fields up to 300 GHz. Health Physics 74, 494–521 (1998). Wiltschko, W., Wiltschko, R. Magnetic compass of european robins. Science 176, 62–64 (1972). Бинги, В. Н. "em"Принципы электромагнитной биофизики"/em". (Физматлит, 2011). Roosli, M., ed. "em"Epidemiology of Electromagnetic Fields"/em". (CRC Press, 2014). Кудряшов, Ю. Б., Рубин, А. Б. "em"Радиационная биофизика: Сверхнизкочастотные электромагнитные излучения"/em". (Физматлит, 2014). Markov, M. S., ed. "em"Electromagnetic Fields in Biology and Medicine"/em". (CRC Press, 2015). Greenebaum, B., Barnes, F., eds. "em"Biological and Medical Aspects of Electromagnetic Fields"/em". Vols. 1, 2, (CRC Press, 2019). Binhi, V. N., Prato, F. S. Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLoS ONE 12, e0179340 (2017). Binhi, V. N. Nonspecific magnetic biological effects: A model assuming the spin-orbit coupling. The Journal of Chemical Physics 151, 204101 (2019). Lohmann, K. J., Lohmann, C. M., Ehrhart, L. M., Bagley, D. A., Swing, T. Animal behaviour: Geomagnetic map used in sea-turtle navigation. Nature 428, 909–910 (2004). Bianco, G., Ilieva, M., Åkesson, S. Magnetic storms disrupt nocturnal migratory activity in songbirds. Biology Letters 15, 20180918 (2019). Кишкинев, Д. А., Чернецов, Н. С. Магниторецепторные системы у птиц: Обзор современных исследований. Журнал Общей Биологии 75, 104–123 (2014). Hore, P. J., Mouritsen, H. The radical-pair mechanism of magnetoreception. Annual Review of Biophysics 45, 299–344 (2016). Wan, G., Hayden, A. N., Iiams, S. E., Merlin, C. Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nature Communications 12, 771 (2021). Новицкий, Ю. И., Новицкая, Г. В. "em"Действие постоянного магнитного поля на растения"/em". (Наука, 2016). Dhiman, S. K., Wu, F., Galland, P. Effects of weak static magnetic fields on the development of seedlings of "em"arabidopsis thaliana"/em". Protoplasma Sep 21, (2022). Бреус, Т. К., Бинги, В. Н., Петрукович, А. А. Магнитный фактор солнечно-земных связей и его влияние на человека: Физические проблемы и перспективы. Успехи Физических Наук 186, 568–576 (2016). Fu, J.-P., Mo, W.-C., Liu, Y., He, R.-Q. Decline of cell viability and mitochondrial activity in mouse skeletal muscle cell in a hypomagnetic field. Bioelectromagnetics 37, 212–222 (2016). Paponov, I. A., Fliegmann, J., Narayana, R., E., M. M. Differential root and shoot magnetoresponses in arabidopsis thaliana. Scientific Reports 11, 1–15 (2021). Johnsen, S., Lohmann, K. J. The physics and neurobiology of magnetoreception. Nature Reviews. Neuroscience 6, 703–712 (2005). Бучаченко, А. Л. Магнито-зависимые молекулярные и химические процессы в биохимии, генетике и медицине. Успехи Химии 83, 1–12 (2014). Yang, X., Li, Zh., Polyakova, T., Dejneka, A., Zablotskii, V., Zhang, X. Effect of static magnetic field on DNA synthesis: The interplay between DNA chirality and magnetic field left–right asymmetry. FASEB BioAdvances 2, 254–263 (2020). Шредингер, Э. "em"Что такое жизнь? Физический аспект живой клетки"/em". (РХД, 2002). Бинги, В. Н. "em"Физические эффекты сознания: Закон воспроизводимости"/em". pp. 559 (Инфра-М, www.lawr.info, 2021). Иваницкий, Г. Р. XXI век: Что такое жизнь с точки зрения физики. Успехи Физических Наук 180, 337–369 (2010). Marais, A., Adams, B., Ringsmuth, A. K., Ferretti, M., Gruber, J. M., Hendrikx, R., et al. The future of quantum biology. Journal of The Royal Society Interface 15, 20180640 (2018). Сюракшин, А. В., Салеев, В. А., Юшанхай, В. Ю. Квантовые модели в биологии. Вестник Самарского университета. Естественнонаучная серия 28, 74–94 (2022). Binhi, V. N., Rubin, A. B. Theoretical concepts in magnetobiology after 40 years of research. Cells 11, 274 (2022). Sarimov, R. M., Binhi, V. N. Low-frequency magnetic fields in cars and office premises and the geomagnetic field variations. Bioelectromagnetics 41, 360–368 (2020). Makinistian, L., Muehsam, D. J., Bersani, F., Belyaev, I. Some recommendations for experimental work in magnetobiology, revisited. Bioelectromagnetics 39, 556–564 (2018). Prato, F. S., Desjardins-Holmes, D., Keenliside, L. D., DeMoor, J. M., Robertson, J. A., Thomas, A. W. Magnetoreception in laboratory mice: Sensitivity to extremely low frequency fields exceeds 33 nT at 30 Hz. Journal of The Royal Society Interface 10, (2013). Engels, S., Schneider, N.-L., Lefeldt, N., Hein, C. M., Zapka, M., Michalik, A., et al. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature 509, 353–356 (2014). Bojarinova, J., Kavokin, K., Pakhomov, A., Cherbunin, R., Anashina, A., Erokhina, M., et al. Magnetic compass of garden warblers is not affected by oscillating magnetic fields applied to their eyes. Scientific Reports 10, 3473 (2020). Pishchalnikov, Y., R., Gurfinkel, Yu. I., Sarimov, R. M., Vasin, A. L., Sasonko, M. L., Matveeva, T. A., et al. Cardiovascular response as a marker of environmental stress caused by variations in geomagnetic field and local weather. Biomedical Signal Processing and Control 51, 401–410 (2019). Krylov, V. V., Kantserova, N. P., Lysenko, L. A., Osipova, E. A. A simulated geomagnetic storm unsynchronizes with diurnal geomagnetic variation affecting calpain activity in roach and great pond snail. International Journal of Biometeorology 63, 241–246 (2019). Janashia, K., Tvildiani, L., Tsibadze, T., Invia, N. Effects of the geomagnetic field time-varying components compensation as evidenced by heart rate variability of healthy males. Life Sciences in Space Research 32, 38–44 (2022). Binhi, V. N. Random effects in magnetobiology and a way to summarize them. Bioelectromagnetics 42, 501–515 (2021). Зенченко, Т. А., Бреус, Т. К. Возможные причины нестабильности воспроизведения гелиобиологических результатов. Физика Биологии и Медицины (2023). Valberg, P. A. Designing EMF experiments: What is required to characterize ‘exposure’? Bioelectromagnetics 16, 396–401 (1995). Buchachenko, A. Why magnetic and electromagnetic effects in biology are irreproducible and contradictory? Bioelectromagnetics 37, 1–13 (2016). Portelli, L. Overcoming the irreproducibility barrier. in Bioengineering and biophysical aspects of electromagnetic fields (eds. Greenebaum, B., Barnes, F.) pp. 435–462 (CRC Press, 2019). Koonin, E. V. "em"The Logic of Chance: The Nature and Origin of Biological Evolution"/em". (FT Press, 2012). Binhi, V. N., Prato, F. S. Rotations of macromolecules affect nonspecific biological responses to magnetic fields. Scientific Reports 8, 13495 (2018). Zenchenko, T. A., Breus, T. K. The possible effect of space weather factors on various physiological systems of the human organism. Atmosphere 12, 1–28 (2021). Krylov, V. V., Bolotovskaya, I. V., Osipova, E. A. The response of European "em"Daphnia magna"/em" Straus and Australian "em"Daphnia carinata"/em" King to changes in geomagnetic field. Electromagnetic Biology and Medicine 32, 30–39 (2013). Васин, А. Л., Шафиркин, А. В., Гурфинкель, Ю. И. Влияние искусственного периодического геомагнитного поля миллигерцового диапазона на показатели вариабельности сердечного ритма. Авиакосмическая и Экологическая Медицина 53, 62–69 (2019). Binhi, V. N., Prato, F. S. A physical mechanism of magnetoreception: extension and analysis. Bioelectromagnetics 38, 41–52 (2017). Buchachenko, A. "em"Magneto-Biology and Medicine"/em". (Nova Science, 2014). Бинги, В. H. Ядерные спины в первичных механизмах биологического действия магнитных полей. Биофизика 40, 677–691 (1995). Бинги, В. Н. Дефекты структуры жидкой воды в магнитном и электрическом полях. Биомедицинская Радиоэлектроника 7–16 (1998). Binhi, V. N., Savin, A. V. Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields. Physical Review E 65, 051912 (2002). Fesenko, E. E., Gluvstein, A. Ya. Changes in the state of water, induced by radiofrequency electromagnetic fields. FEBS Lett. 367, 53–55 (1995). Lobyshev, V. I. Water is a sensor to weak forces including electromagnetic fields of low intensity. Electromagnetic Biology and Medicine 24, 449–461 (2005). Бинги, В. Н., Рубин, А. Б. Фундаментальная проблема магнитобиологии. Биомедицинские Технологии и Радиоэлектроника 63–76 (2007). Binhi, V. N. "em"Magnetobiology: Underlying Physical Problems"/em". (Academic Press, 2002). Afanasyeva, M. S., Taraban, M. B., Purtov, P. A., Leshina, T. V., Grissom, C. B. Magnetic spin effects in enzymatic reactions: Radical oxidation of NADH by horseradish peroxidase. Journal of the American Chemical Society 128, 8651–8658 (2006). Buchachenko, A. L., Kuznetsov, D. A., Breslavskaya, N. N. Chemistry of enzymatic ATP synthesis: An insight through the isotope window. Chemical Reviews 112, 2042–2058 (2012). Минаев, Б. Ф. Электронные механизмы активации молекулярного кислорода. Успехи Химии 76, 1059–1083 (2007). Amonkosolpan, J., Aliev, G. N., Wolverson, D., Snow, P. A., Davies, J. J. Magnetic field dependence of singlet oxygen generation by nanoporous silicon. Nanoscale Research Letters 9, 342 (2014). Schulten, K., Swenberg, C., Weller, A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Zeitschrift Fur Physikalische Chemie 111, 1–5 (1978). Xu, J., Jarocha, L. E., Zollitsch, T., Konowalczyk, M., Henbest, K. B., Richert, S., et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594, 535–540 (2021). Mouritsen, H. Long-distance navigation and magnetoreception in migratory animals. Nature 558, 50–59 (2018). Hoff, A. J., Rademaker, H., Van Grondelle, R., Duysens, L. N. M. On the magnetic field dependence of the yield of the triplet state in reaction centers of photosynthetic bacteria. Biochimica Et Biophysica Acta – Bioenergetics 460, 547–554 (1977). Steiner, U. E., Ulrich, T. Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews 89, 51–147 (1989). Fedin, M. V., Shakirov, S. R., Purtov, P. A., Bagryanskaya, E. G. Electron spin relaxation of radicals in weak magnetic fields. Russian Chemical Bulletin 55, 1703–1716 (2006). Ivanov, K. L., Petrova, M. V., Lukzen, N. N., Maeda, K. Consistent treatment of spin-selective recombination of a radical pair confirms the Haberkorn approach. Journal of Physical Chemistry A 114, 9447–9455 (2010). Gauger, E. M., Rieper, E., Morton, J. J. L., Benjamin, S. C., Vedral, V. Sustained quantum coherence and entanglement in the avian compass. Physical Review Letters 106, 040503 (2011). Kattnig, D. R., Solov’yov, I., Hore, P. J. Electron spin relaxation in cryptochrome-based magnetoreception. Physical Chemistry Chemical Physics 18, 12443–12456 (2016). Worster, S., Kattnig, D. R., Hore, P. J. Spin relaxation of radicals in cryptochrome and its role in avian magnetoreception. The Journal of Chemical Physics 145, 035104 (2016). Cai, J., Plenio, M. B. Chemical compass model for avian magnetoreception as a quantum coherent device. Physical Review Letters 111, 230503 (2013). Weaver, J. C., Vaughan, T. E., Astumian, R. D. Biological sensing of small field differences by magnetically sensitive chemical reactions. Nature 405, 707–709 (2000). Grundler, W., Kaiser, F., Keilmann, F., Walleczek, J. Mechanisms of electromagnetic interaction with cellular systems. Naturwissenschaften 79, 551–559 (1992). Riznichenko, G. Yu., Plyusnina, T. Yu., Aksyonov, S. I. Modelling of the effect of a weak electric field on a nonlinear transmembrane ion transfer system. Bioelectrochem. Bioenerg. 35, 39–47 (1994). Player, T. C., Baxter, E. D. A., Allatt, S., Hore, P. J. Amplification of weak magnetic field effects on oscillating reactions. Scientific Reports 11, 9615 (2021). Бинги, В. Н. Магнитная навигация животных, контрастная чувствительность зрения и закон Вебера-Фехнера. Сенсорные Системы 37, 46–60 (2023). Binhi, V. N. Statistical amplification of the effects of weak MFs in cellular translation. Cells 12, 724 (2023). Mohler, K., Ibba, M. Translational fidelity and mistranslation in the cellular response to stress. Nature Microbiology 2, 17117 (2017). Parker, J. Errors and alternatives in reading the universal genetic code. Microbiological Reviews 53, 273–298 (1989). Kurland, C. G. Translational accuracy and the fitness of bacteria. Annual Review of Genetics 26, 29–50 (1992). Nissley, D. A., Jiang, Y., Trovato, F., Sitarik, I., Narayan, K. B., To, P., et al. Universal protein misfolding intermediates can bypass the proteostasis network and remain soluble and less functional. Nature Communications 13, 3081 (2022). Belyaev, I. Y., Koch, C. B., Terenius, O., Roxstrom-Lindquist, K., Malmgren, L. O. G., Sommer, W. H., et al. Exposure of rat brain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects on chromatin conformation. Bioelectromagnetics 27, 295–306 (2006). Drummond, D. A., Wilke, C. O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134, 341–352 (2008). Legrain, P., Aebersold, R., Archakov, A., Bairoch, A., Bala, K., Beretta, L., et al. The human proteome project: Current state and future direction. Molecular & Cellular Proteomics 10, (2011). Stovbun, S. V., Zlenko, D. V., Bukhvostov, A. A., Vedenkin, A. A., Skoblin, A. A., Kuznetsov, D. A., et al. Magnetic field and nuclear spin influence on the DNA synthesis rate. Scientific Reports 13, 465 (2023). Agliassa, C., Maffei, M. E. Reduction of geomagnetic field (GMF) to near null magnetic field (NNMF) affects some Arabidopsis thaliana clock genes amplitude in a light independent manner. Journal of Plant Physiology 232, 23–26 (2019). Бинги, В. Н. Первичный физический механизм биологических эффектов слабых магнитных полей. Биофизика 61, 201–208 (2016). Dhiman, S. K., Galland, P. Effects of weak static magnetic fields on the gene expression of seedlings of "em"Arabidopsis thaliana"/em". Journal of Plant Physiology 231, 9–18 (2018). Blank, M., Soo, L., Lin, H., Henderson, A. S., Goodman, R. Changes in transcription in HL-60 cells following exposure to alternating currents from electric fields. Bioelectrochemistry and Bioenergetics 28, 301–309 (1992). Binhi, V. N., Chernavsky, D. S. Stochastic resonance of magnetosomes fixed in the cytoskeleton. Biophysics 50, 599–603 (2005). Kirschvink, J. L., Winklhofer, M., Walker, M. M. Biophysics of magnetic orientation: Strengthening the interface between theory and experimental design. Journal of the Royal Society Interface 7, S179–S171 (2010).
Дополнительные файлы

