Modified Heuristic Task Allocation Algorithms for Mobile Robot Teams under Uncertainty
- 作者: Migranov A.B1
-
隶属关系:
- Mavlyutov Institute of Mechanics, Ufa Federal Research Centre, Russian Academy of Sciences
- 期: 卷 24, 编号 3 (2025)
- 页面: 884-913
- 栏目: Robotics, automation and control systems
- URL: https://journals.rcsi.science/2713-3192/article/view/350718
- DOI: https://doi.org/10.15622/ia.24.3.6
- ID: 350718
如何引用文章
全文:
详细
作者简介
A. Migranov
Mavlyutov Institute of Mechanics, Ufa Federal Research Centre, Russian Academy of Sciences
Email: abm.imech.anrb@mail.ru
Oktyabrya Av. 71
参考
- Lin X., Gao F., Bian W. A high-effective swarm intelligence-based multi-robot cooperation method for target searching in unknown hazardous environments // Expert Systems with Applications. 2025. vol. 262. doi: 10.1016/j.eswa.2024.125609.
- Cardona G.A., Calderon J.M. Robot Swarm Navigation and Victim Detection Using Rendezvous Consensus in Search and Rescue Operations // Applied Sciences. 2019. vol. 9(8). doi: 10.3390/app9081702.
- Alotaibi E.T., Alqefari S.S., Koubaa A. LSAR: Multi-UAV Collaboration for Search and Rescue Missions // IEEE Access. 2019. vol. 7. pp. 55817–55832. doi: 10.1109/ACCESS.2019.2912306.
- Cao Y.U., Fukunaga A.S., Kahng A. Cooperative mobile robotics: Antecedents and directions // Autonomous Robots. 1997. vol. 4. pp. 7–27.
- Gerkey B.P., Matarić M.J. A Formal Analysis and Taxonomy of Task Allocation in Multi-Robot Systems // International Journal of Robotics Research. 2004. vol. 23(9). pp. 939–954. doi: 10.1177/0278364904045564.
- Kalyaev I.A., Melnik E.S., Klimenko A.V. Distributed Ledger Based Workload Logging in the Robot Swarm // Proc. 4th Int. Conf. Interactive Collaborative Robotics (ICR 2019). LNCS, 2019. pp. 119–128. doi: 10.1007/978-3-030-26118-4_12.
- Kalyaev I.A. Melnik E.S., Klimenko A.V. Distributed Methods for Autonomous Robot Groups Fault-Tolerant Management // Proc. 5th Int. Conf. Interactive Collaborative Robotics (ICR 2020). LNCS, 2020. vol. 12336. pp. 135–147. doi: 10.1007/978-3-030-60337-3_14.
- Brambilla M., Ferrante E., Birattari M., Dorigo M. Swarm robotics: a review from the swarm engineering perspective // Swarm Intelligence. 2013. vol. 7. pp. 1–41. doi: 10.1007/s11721-012-0075-2.
- Parker L.E. ALLIANCE: An Architecture for Fault Tolerant Multi-Robot Cooperation // IEEE Transactions on Robotics and Automation. 1998. vol. 14(2). pp. 220–240. doi: 10.1109/70.681242.
- Dadgar E., Jafari S., Hamzeh A. A PSO-based multi-robot cooperation method for target searching in unknown environments // Neurocomputing. 2016. vol. 177. pp. 62–74. doi: 10.1016/j.neucom.2015.11.007.
- Garg R. E2RGWO: Exploration enhanced robotic Grey Wolf Optimizer for cooperative multiple target search for robotic swarms // Arabian Journal for Science and Engineering. 2023. vol. 48. pp. 9887–9903. doi: 10.1007/s13369-022-07438-5.
- Dorri A., Kanhere S.S., Jurdak R. Multi-Agent Systems: A Survey // IEEE Access. 2018. vol. 6. pp. 28573–28593. doi: 10.1109/ACCESS.2018.2831228.
- Fox D., Ko J., Konolige K., Limketkai B., Schulz D., Stewart B. Distributed multirobot exploration and mapping // Proceedings of the IEEE. 2006. vol. 94(7). pp. 1325–1339. doi: 10.1109/JPROC.2006.876927.
- Dorigo M., Blum C., Stutzle T. Ant Colony Optimization – Introduction and Recent Trends // IEEE Computational Intelligence Magazine. 2007. vol. 1(4). pp. 28–39. doi: 10.1109/MCI.2006.329691.
- Liu F., Tan Y. Multi-robot Task Allocation Based on Ant Colony Algorithm // Journal of Computers. 2012. vol. 7(9). pp. 2160–2167.
- Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities // Proceedings of the National Academy of Sciences USA. 1982. vol. 79(8). pp. 2554–2558. doi: 10.1073/pnas.79.8.2554.
- Cechinel A.K., De Pieri E.R., Pérez A.L.F., Plentz P.D.M. Multi-robot Task Allocation Using Island Model Genetic Algorithm // IFAC-PapersOnLine. 2021. vol. 54(1). pp. 558–563. doi: 10.1016/j.ifacol.2021.08.063.
- Darintsev O.V., Migranov A.B. Multi-criteria Optimization of the Mobile Robot Group Strategy Using the Ant Algorithm // Eds.: Ronzhin A., Shishlakov V. Electromechanics and Robotics. Smart Innovation. Systems and Technologies. Springer. Singapore. 2022. vol. 232. pp. 97–108. doi: 10.1007/978-981-16-2814-6_9.
- Даринцев О.В., Мигранов А.Б. Модификация аппарата нейронной сети Хопфилда для решения задачи оптимального распределения заданий в группе мобильных роботов // Известия РАН. Теория и системы управления. 2024. № 2. С. 169–182.
- Darintsev O.V., Migranov A.B. Task Distribution Module for a Team of Robots Based on Genetic Algorithms: Synthesis Methodology and Testing // Proc. XXI Int. Conf. Complex Systems: Control and Modeling Problems (CSCMP). 2019. pp. 296–300. doi: 10.1109/CSCMP45713.2019.8976649.
- Khamis A.M., Hussein A., Elmogy A.M. Multi-robot Task Allocation: A Review of the State-of-the-Art // Eds. Koubâa A., Martínez-de-Dios J.R. Cooperative Robots and Sensor Networks. Studies in Computational Intelligence. Springer. Cham. 2015. pp. 31–51. doi: 10.1007/978-3-319-18299-5_2.
- Dias M.B., Zlot R., Kalra N., Stentz A. Market-based multirobot coordination: A survey and analysis // Proceedings of the IEEE. 2006. vol. 94(7). pp. 1257–1270. doi: 10.1109/JPROC.2006.876939.
- Garg R., Shukla A., Tiwari R. AERPSO – An adaptive exploration robotic PSO based cooperative algorithm for multiple target searching // Expert Systems with Applications. 2022. vol. 209. doi: 10.1016/j.eswa.2022.118245.
- Zhu B., Xie W.-F. An improved genetic algorithm with Euclidean geometry and hybrid heuristic crossover for the traveling salesman problem //2023 IEEE Congress on Evolutionary Computation (CEC). Chicago, IL, USA, 2023. pp. 1-8. doi: 10.1109/CEC53210.2023.10254179.
- Fan M., Li J. Surrogate-assisted genetic algorithms for the travelling salesman problem and vehicle routing problem // Proc. IEEE Congress on Evolutionary Computation (CEC). 2020. pp. 1–7. doi: 10.1109/CEC48606.2020.9185817.
- Ojeda Rios B.H., Xavier E.C., Miyazawa F., Amorim P., Curcio E., Joao Santos M. Recent dynamic vehicle routing problems: A survey // Computers & Industrial Engineering. 2021. vol. 160. doi: 10.1016/j.cie.2021.107604.
- Ding H., Cheng H.-J., Shan X. Modified Artificial Bee Colony Algorithm for the Capacitated Vehicle Routing Problem // DEStech Transactions on Social Science, Education and Human Science. 2018. doi: 10.12783/dtssehs/amse2018/24837.
- Gendreau M., Hertz A., Laporte G. A tabu search heuristic for the vehicle routing problem // Management Science. 1994. vol. 40(10). pp. 1276–1290. doi: 10.1287/mnsc.40.10.1276.
- Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing // Science. 1983. vol. 220(4598). pp. 671–680. doi: 10.1126/science.220.4598.671.
- Даринцев О.В., Мигранов А.Б. Аналитический обзор подходов к распределению задач в группах мобильных роботов на основе технологий мягких вычислений // Информатика и автоматизация. 2022. Т. 21. № 4. С. 729–757.
- Chao I.M., Golden B.L., Wasil E.A. A new heuristic for the multi-depot vehicle routing problem that improves upon best-known solutions // American Journal of Mathematical and Management Sciences. 1993. vol. 13(3–4). pp. 371–406. doi: 10.1080/01966324.1993.10737363.
- Dorigo M., Stützle T. Ant Colony Optimization, MIT Press, 2004.
补充文件


