Мониторинг надежности пользовательских вычислительных устройств в режиме реального времени: систематическое отображение

Обложка

Цитировать

Полный текст

Аннотация

Данный исследовательский обзор сосредоточен на мониторинге надежности вычислительных систем в режиме реального времени на стороне пользователя. В условиях гетерогенной и распределенной вычислительной среды, где отсутствует централизованный контроль, исследуется использование моделей искусственного интеллекта для поддержки процессов принятия решений в мониторинге надежности системы. Методология исследования основана на систематическом отображении предыдущих исследований, опубликованных в научных базах данных IEEE и Scopus. Анализ проведен на основе 50 научных статей, опубликованных с 2013 по 2022 годы, показал растущий научный интерес к данной области. Основное применение исследуемого метода связано с сетевыми технологиями и здравоохранением. Данный метод нацелен на интеграцию сети медицинских сенсоров и управляющих данных с пользовательскими вычислительными устройствами. Однако этот метод также применяется в промышленном и экологическом мониторинге. Выводы исследования показывают, что мониторинг надежности пользовательских вычислительных устройств в режиме реального времени находится на начальной стадии развития. Он не имеет стандартов, но за последние два года приобрел значительное значение и интерес. Большинство исследуемых статей сосредоточены на методах сбора данных с использованием уведомлений для поддержки централизованных стратегий принятия решений. Однако, существует множество возможностей для дальнейшего развития данного метода, таких как совместимость данных, федеративные и совместные модели принятия решений, формализация экспериментального дизайна, суверенитет данных, систематизация базы данных для использования предыдущих знаний и опыта, стратегии калибровки и повторной корректировки для источников данных.

Об авторах

М. Х Диван

Корпорация Intel

Автор, ответственный за переписку.
Email: mario.jose.divan.koller@intel.com
25-я авеню, Кампус Джонс Фарм 3

Д. А Щемелинин

Корпорация Intel

Email: dshchmel@gmail.com
25-я авеню, Кампус Джонс Фарм 3

М. E Карранса

Корпорация Intel

Email: marcos.e.carranza@intel.com
25-я авеню, Кампус Джонс Фарм 3

Ц. И Мартинес-Спессот

Корпорация Intel

Email: cesar.martinez@intel.com
25-я авеню, Кампус Джонс Фарм 3

М. В Буйневич

Санкт-Петербургский университет государственной противопожарной службы МЧС России

Email: bmv1958@yandex.ru
Московский проспект 149

Список литературы

  1. Sun Y., Kadota I., Talak R., Modiano E. Age of Information: A New Metric for Information Freshness // Springer Cham, 2020. doi: 10.2200/S00954ED2V01Y201909CNT023.
  2. Li H., Li X., Cheng Q. A fine-grained privacy protection data aggregation scheme for outsourcing smart grid // Frontiers of Computer Science. 2023. vol. 17. no. 3. doi: 10.1007/s11704-022-2003-y.
  3. Murtadha M.K., Mushgil B.M. Flexible handover solution for vehicular ad-hoc networks based on software-defined networking and fog computing // International Journal of Electrical and Computer Engineering. 2023. vol. 13. no. 2. pp. 1570–1579. doi: 10.11591/ijece.v13i2.
  4. Zhang H., Qi Q., Ji W., Tao F. An update method for digital twin multi-dimension models // Robotics and Computer-Integrated Manufacturing. 2023. vol. 80. doi: 10.1016/j.rcim.2022.102481.
  5. Algiriyage N., Prasanna R., Stock K., Doyle E.E., Johnston D. DEES: a real-time system for event extraction from disaster-related web text // Social Network Analysis and Mining. 2023. vol. 13. no. 1. doi: 10.1007/s13278-022-01007-2.
  6. Mokhtar M.N.A.B.D., Ismail I., Hamzah W.M.A.F.W., Shamsuddin S.N.W., Arsad M.A.M. Real-Time Dream House Decorator in the Virtual Reality Environment // International Conference on Business and Technology. Cham: Springer International Publishing, 2021. vol. 487. pp. 525–537. doi: 10.1007/978-3-031-08084-5_38.
  7. Grover J. Industrial IoT and Its Applications // IoT for Sustainable Smart Cities and Society. 2022. pp. 107–124. doi: 10.1007/978-3-030-89554-9_5.
  8. Singh M., Srivastava R., Fuenmayor E., Kuts V., Qiao Y., Murray N., Devine D. Applications of Digital Twin across Industries: A Review // Applied Sciences. 2022. vol. 12. no. 11. doi: 10.3390/app12115727.
  9. Wei C., Xu J., Li Q., Jiang S. An Intelligent Wildfire Detection Approach through Cameras Based on Deep Learning // Sustainability. 2022. vol. 14. no. 23. doi: 10.3390/su142315690.
  10. Prabhu B.VB., Lakshmi R., Ankitha R., Prateeksha M.S., Priya N.C. RescueNet: YOLO-based object detection model for detection and counting of flood survivors // Modeling Earth Systems and Environment. 2022. vol. 8. no. 4. pp. 4509–4516. doi: 10.1007/s40808-022-01414-6.
  11. Kumar N., Ramesh M.V. Accurate IoT Based Slope Instability Sensing System for Landslide Detection // IEEE Sensors Journal. 2022. vol. 22. no. 17. pp. 17151–17161. doi: 10.1109/JSEN.2022.3189903.
  12. Wei Z., Zhu M., Zhang N., Wang L., Zou Y., Meng Z., Wu H., Feng Z. UAV-Assisted Data Collection for Internet of Things: A Survey // IEEE Internet of Things Journal. 2022. vol. 9. no. 17. pp. 15460–15483. doi: 10.1109/JIOT.2022.3176903.
  13. Salau B.A., Rawal A., Rawat D.B. Recent Advances in Artificial Intelligence for Wireless Internet of Things and Cyber-Physical Systems: A Comprehensive Survey // IEEE Internet of Things Journal. 2022. vol. 9. no. 15. pp. 12916–12930. doi: 10.1109/JIOT.2022.3170449.
  14. Costa B., Bachiega J., De Carvalho L.R., Araujo A.P. Orchestration in Fog Computing: A Comprehensive Survey // ACM Computing Surveys. 2023. vol. 55. no. 2. doi: 10.1145/3486221.
  15. Niveditha P.S., John S.P., Simpson S.V. Review on Edge Computing-assisted d2d Networks // International Conference on Innovative Computing and Communications: Proceedings of ICICC. 2022. pp. 41–58. doi: 10.1007/978-981-19-2821-5_4.
  16. Nguyen T.A., Kaliappan V.K., Jeon S., Jeon K.-S., Lee J.-W., Min D. Blockchain Empowered Federated Learning with Edge Computing for Digital Twin Systems in Urban Air Mobility // In Asia-Pacific International Symposium on Aerospace Technology. 2023. pp. 935–950. doi: 10.1007/978-981-19-2635-8_69.
  17. ISO/IEC 25010. Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — System and software quality models. 2011. Available at: https://www.iso.org/standard/35733.html (accessed 20.09.2023).
  18. Divan M.J., Sanchez-Reynoso M.L., Panebianco J.E., Mendez M.J. IoT-Based Approaches for Monitoring the Particulate Matter and Its Impact on Health // IEEE Internet of Things Journal. 2021. vol. 8. no. 15. pp. 11983–12003. doi: 10.1109/JIOT.2021.3068898.
  19. Divan M.J. Data-driven decision making // Proceeding of International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS). 2017. pp. 50–56. doi: 10.1109/ICTUS.2017.8285973.
  20. Runeson P., Host M. Guidelines for conducting and reporting case study research in software engineering // Empirical software engineering. 2009. vol. 14. pp. 131–164. doi: 10.1007/s10664-008-9102-8.
  21. Verner J.M., Sampson J., Tosic V., Bakar N.A., Kitchenham B.A. Guidelines for industrially-based multiple case studies in software engineering // Proceeding of Third International Conference on Research Challenges in Information Science. 2009. pp. 313–324. doi: 10.1109/RCIS.2009.5089295.
  22. Petersen K., Vakkalanka S., Kuzniarz L. Guidelines for conducting systematic mapping studies in software engineering: An update // Information and software technology. 2015. vol. 64. pp. 1–18. doi: 10.1016/j.infsof.2015.03.007.
  23. Prajeesha, Anuradha M. EDGE Computing Application in SMART GRID-A Review // Proceeding of the 2nd International Conference on Electronics and Sustainable Communication Systems (ICESC'2021). 2021. pp. 397–402. doi: 10.1109/ICESC51422.2021.9532792.
  24. Anikwe C.V., Nweke H.F., Ikegwu A.C., Egwuonwu C.A., Onu F.U., Alo U.R., Teh Y.W. Mobile and wearable sensors for data-driven health monitoring system: State-of-the-art and prospect // Expert Systems with Applications. 2022. vol. 202. doi: 10.1016/j.eswa.2022.117362.
  25. Hu Z., Xu X., Zhang Y., Tang H., Cheng Y., Qian C., Khosravi M.R.. Cloud–edge cooperation for meteorological radar big data: a review of data quality control // Complex and Intelligent Systems. 2021. doi: 10.1007/s40747-021-00581-w.
  26. Groshev M., Guimaraes C., De La Oliva A., Gazda R. Dissecting the Impact of Information and Communication Technologies on Digital Twins as a Service // IEEE Access. 2021. vol. 9. pp. 102862–102876. doi: 10.1109/ACCESS.2021.3098109.
  27. Begum B.A. Nandury S.V. A Survey of Data Aggregation Protocols for Energy Conservation in WSN and IoT // Wireless Communications and Mobile Computing. 2022. vol. 2022. doi: 10.1155/2022/8765335.
  28. Gurewitz O., Shifrin M., Dvir E. Data Gathering Techniques in WSN: A Cross-Layer View // Sensors. 2022. vol. 22. no. 7. doi: 10.3390/s22072650.
  29. Bayih A.Z., Morales J., Assabie Y., de By R.A. Utilization of Internet of Things and Wireless Sensor Networks for Sustainable Smallholder Agriculture // Sensors. 2022. vol. 22. no. 9. doi: 10.3390/s22093273.
  30. Mirani A.A., Velasco-Hernandez G., Awasthi A., Walsh J. Key Challenges and Emerging Technologies in Industrial IoT Architectures: A Review // Sensors. 2022. vol. 22, no. 15. doi: 10.3390/s22155836.
  31. Bagwari S., Gehlot A., Singh R., Priyadarshi N., Khan B. Low-Cost Sensor-Based and LoRaWAN Opportunities for Landslide Monitoring Systems on IoT Platform: A Review // IEEE Access. 2022. vol. 10. pp. 7107–7127. doi: 10.1109/ACCESS.2021.3137841.
  32. Shahbazi Z., Byun Y.-C. Analysis of the Security and Reliability of Cryptocurrency Systems Using Knowledge Discovery and Machine Learning Methods // Sensors. 2022. vol. 22. no. 23. doi: 10.3390/s22239083.
  33. Amador-Domínguez E., Serrano E., Manrique D. GEnI: A framework for the generation of explanations and insights of knowledge graph embedding predictions // Neurocomputing. 2023. vol. 521. pp. 199–212. doi: 10.1016/j.neucom.2022.12.010.
  34. Valente F., Paredes S., Henriques J., Rocha T., de Carvalho P., Morais J. Interpretability, personalization and reliability of a machine learning based clinical decision support system // Data Min. Knowl. Discov. 2022. vol. 36. no. 3. pp. 1140–1173. doi: 10.1007/s10618-022-00821-8.
  35. Yang B., Bai X., Zhang C. Data Collection Method of Energy Adaptive Distributed Wireless Sensor Networks Based on UAV // Wirel. Commun. Mob. Comput. 2022. vol. 2022. doi: 10.1155/2022/3469221.
  36. Bai Y., Cao L., Wang S., Ding H., Yue Y. Data Collection Strategy Based on OSELM and Gray Wolf Optimization Algorithm for Wireless Sensor Networks // Comput. Intell. Neurosci. 2022. vol. 2022. doi: 10.1155/2022/4489436.
  37. Wei D. et al. Power-Efficient Data Collection Scheme for AUV-Assisted Magnetic Induction and Acoustic Hybrid Internet of Underwater Things // IEEE Internet Things J. 2022. vol. 9. no. 14. pp. 11675–11684. doi: 10.1109/JIOT.2021.3131679.
  38. Benmansour F.L., Labraoui N.A. Comprehensive Review on Swarm Intelligence-Based Routing Protocols in Wireless Multimedia Sensor Networks // Int. J. Wirel. Inf. Networks. 2021. vol. 28. no. 2. pp. 175–198. doi: 10.1007/s10776-021-00508-9.
  39. Hannan M.A., Hassan K., Jern K.P. A review on sensors and systems in structural health monitoring: Current issues and challenges // Smart Struct. Syst. 2018. vol. 22. no. 5. pp. 509–525. doi: 10.12989/sss.2018.22.5.509.
  40. Ajakwe S.O., Nwakanma C.I., Kim D.-S., Lee J.-M. Key Wearable Device Technologies Parameters for Innovative Healthcare Delivery in B5G Network: A Review // IEEE Access. 2022. vol. 10. pp. 49956–49974. doi: 10.1109/ACCESS.2022.3173643.
  41. SJR – SCImago Journal and Country Rank [Official web site of SCImago]. 2020. Available at: www.scimagojr.com (accessed 23.09.2020).
  42. Guerrero-Bote V.P., Moya-Anegón F. A further step forward in measuring journals’ scientific prestige: The SJR2 indicator // J. Informetr. 2012. vol. 6. no. 4. pp. 674–688. doi: 10.1016/j.joi.2012.07.001.
  43. Sung W., Hsu C. IOT system environmental monitoring using IPSO weight factor estimation // Sens. Rev. 2013. vol. 33. no. 3, pp. 246–256. doi: 10.1108/02602281311324708.
  44. Pournaras E., Yao M., Helbing D. Self-regulating supply–demand systems // Futur. Gener. Comput. Syst. 2017. vol. 76. pp. 73–91. doi: 10.1016/j.future.2017.05.018.
  45. Satija U., Ramkumar B., Manikandan M.S. Real-Time Signal Quality-Aware ECG Telemetry System for IoT-Based Health Care Monitoring // IEEE Internet Things J. 2017. vol. 4. no. 3. pp. 815–823. doi: 10.1109/JIOT.2017.2670022.
  46. Al-Jaroodi J., Mohamed N. PsCPS: A Distributed Platform for Cloud and Fog Integrated Smart Cyber-Physical Systems // IEEE Access. 2018. vol. 6. pp. 41432–41449. doi: 10.1109/ACCESS.2018.2856509.
  47. Pore M., Chakati V., Banerjee A., Gupta S.K.S. ContextAiDe // ACM Trans. Internet Technol. 2019. vol. 19. no. 2. pp. 1–23. doi: 10.1145/3301444.
  48. Albahri O.S. et al. Fault-Tolerant mHealth Framework in the Context of IoT-Based Real-Time Wearable Health Data Sensors // IEEE Access. 2019. vol. 7, pp. 50052–50080. doi: 10.1109/ACCESS.2019.2910411.
  49. Cao K., Xu G., Zhou J., Wei T., Chen M., Hu S. QoS-Adaptive Approximate Real-Time Computation for Mobility-Aware IoT Lifetime Optimization // IEEE Trans. Comput. Des. Integr. Circuits Syst. 2019. vol. 38. no. 10. pp. 1799–1810. doi: 10.1109/TCAD.2018.2873239.
  50. Dong R., She C., Hardjawana W., Li Y., Vucetic B. Deep Learning for Hybrid 5G Services in Mobile Edge Computing Systems: Learn From a Digital Twin // IEEE Trans. Wirel. Commun. 2019. vol. 18. no. 10. pp. 4692–4707. doi: 10.1109/TWC.2019.2927312.
  51. Xu X., He C., Xu Z., Qi L., Wan S., Bhuiyan M.Z.A. Joint Optimization of Offloading Utility and Privacy for Edge Computing Enabled IoT // IEEE Internet Things J. 2020. vol. 7. no. 4. pp. 2622–2629. doi: 10.1109/JIOT.2019.2944007.
  52. Farahani B., Barzegari M., Aliee F.S., Shaik K.A. Towards collaborative intelligent IoT eHealth: From device to fog, and cloud // Microprocess. Microsyst. 2020. vol. 72. p. 102938. doi: 10.1016/j.micpro.2019.102938.
  53. Zhang T. et al. A Joint Deep Learning and Internet of Medical Things Driven Framework for Elderly Patients // IEEE Access. 2020. vol. 8. pp. 75822–75832. doi: 10.1109/ACCESS.2020.2989143.
  54. Sodhro A.H., Sodhro G.H., Guizani M., Pirbhulal S., Boukerche A. AI-Enabled Reliable Channel Modeling Architecture for Fog Computing Vehicular Networks // IEEE Wirel. Commun. 2020. vol. 27. no. 2. pp. 14–21. doi: 10.1109/MWC.001.1900311.
  55. Bhatia M., Sood S.K. Quantum Computing-Inspired Network Optimization for IoT Applications // IEEE Internet Things J. 2020. vol. 7. no. 6. pp. 5590–5598. doi: 10.1109/JIOT.2020.2979887.
  56. Zhang J. Research on environmental monitoring trend analysis based on internet of things visualization technology // Fresenius Environ. Bull. 2020. vol. 29. no. 2. pp. 1054 – 1062. [Online]. Available at: www.scopus.com/inward/record.uri?eid=2-s2.0-85090455681&partnerID=40&md5=7c5626045c3f39320bb91185bf694295 (accessed 11.05.2023).
  57. Loke G. et al. Digital electronics in fibers enable fabric-based machine-learning inference // Nat. Commun. 2021. vol. 12. no. 1. p. 3317. doi: 10.1038/s41467-021-23628-5.
  58. Ke R., Zhuang Y., Pu Z., Wang Y. A Smart, Efficient, and Reliable Parking Surveillance System with Edge Artificial Intelligence on IoT Devices // IEEE Trans. Intell. Transp. Syst. 2021. vol. 22. no. 8. pp. 4962–4974. doi: 10.1109/TITS.2020.2984197.
  59. Wang X., Garg S., Lin H., Piran M.J., Hu J., Hossain M.S. Enabling Secure Authentication in Industrial IoT with Transfer Learning Empowered Blockchain // IEEE Trans. Ind. Informatics. 2021. vol. 17. no. 11. pp. 7725–7733. doi: 10.1109/TII.2021.3049405.
  60. Lee W.J., Xia K., Denton N.L., Ribeiro B., Sutherland J.W. Development of a speed invariant deep learning model with application to condition monitoring of rotating machinery // J. Intell. Manuf. 2021. vol. 32. no. 2. pp. 393–406. doi: 10.1007/s10845-020-01578-x.
  61. Ibrar M., Wang L., Muntean G.-M., Chen J., Shah N., Akbar A. IHSF: An Intelligent Solution for Improved Performance of Reliable and Time-Sensitive Flows in Hybrid SDN-Based FC IoT Systems // IEEE Internet Things J. 2021. vol. 8. no. 5. pp. 3130–3142. doi: 10.1109/JIOT.2020.3024560.
  62. Brik B., Esseghir M., Merghem-Boulahia L., Snoussi H. An IoT-based deep learning approach to analyse indoor thermal comfort of disabled people // Build. Environ. 2021. vol. 203. p. 108056. doi: 10.1016/j.buildenv.2021.108056.
  63. Singh P.D., Kaur R., Singh K.D., Dhiman G., Soni M. Fog-centric IoT based smart healthcare support service for monitoring and controlling an epidemic of Swine Flu virus // Informatics Med. Unlocked. 2021. vol. 26. p. 100636. doi: 10.1016/j.imu.2021.100636.
  64. Bhatia M. Intelligent System of Game-Theory-Based Decision Making in Smart Sports Industry // ACM Trans. Intell. Syst. Technol. 2021. vol. 12. no. 3. pp. 1–23. doi: 10.1145/3447986.
  65. Baggag A. et al. Learning Spatiotemporal Latent Factors of Traffic via Regularized Tensor Factorization: Imputing Missing Values and Forecasting // IEEE Trans. Knowl. Data Eng. 2021. vol. 33. no. 6. pp. 2573–2587. doi: 10.1109/TKDE.2019.2954868.
  66. Razzaq M.A., Mahar J.A., Ahmad M., Saher N., Mehmood A., Choi G.S. Hybrid Auto-Scaled Service-Cloud-Based Predictive Workload Modeling and Analysis for Smart Campus System // IEEE Access. 2021. vol. 9. pp. 42081–42089. doi: 10.1109/ACCESS.2021.3065597.
  67. Jin H., Zhao J. Real-time energy consumption detection simulation of network node in internet of things based on artificial intelligence // Sustainable Energy Technologies and Assessments. 2021. vol. 44. no. 101004. doi: 10.1016/j.seta.2021.101004.
  68. Alzamzami F., El Saddik A. Monitoring Cyber SentiHate Social Behavior During COVID-19 Pandemic in North America // IEEE Access. 2021. vol. 9. pp. 91184–91208. doi: 10.1109/ACCESS.2021.3088410.
  69. Adhikari M., Ambigavathi M., Menon V.G., Hammoudeh M. Random Forest for Data Aggregation to Monitor and Predict COVID-19 Using Edge Networks // IEEE Internet Things Mag. 2021. vol. 4. no. 2. pp. 40–44. doi: 10.1109/IOTM.0001.2100052.
  70. Jurdi R., Andrews J.G., Heath R.W. Scheduling Observers Over a Shared Channel With Hard Delivery Deadlines // IEEE Trans. Commun. 2021. vol. 69. no. 1. pp. 133–148. doi: 10.1109/TCOMM.2020.3032172.
  71. Hashash O., Sharafeddine S., Dawy Z., Mohamed A., Yaacoub E. Energy-Aware Distributed Edge ML for mHealth Applications with Strict Latency Requirements // IEEE Wirel. Commun. Lett. 2021. vol. 10. no. 12. pp. 2791–2794. doi: 10.1109/LWC.2021.3117876.
  72. Liang W., Li W., Feng L. Information Security Monitoring and Management Method Based on Big Data in the Internet of Things Environment // IEEE Access. 2021. vol. 9. pp. 39798–39812. doi: 10.1109/ACCESS.2021.3064350.
  73. Shao S., Zhang Q., Guo S., Qi F. Task Allocation Mechanism for Cable Real-Time Online Monitoring Business Based on Edge Computing // IEEE Syst. J. 2021. vol. 15. no. 1. pp. 1344–1355. doi: 10.1109/JSYST.2020.2988266.
  74. Vaidya G., Nambi A., Prabhakar T.V., Kumar V.T., Sudhakara S. Towards generating a reliable device-specific identifier for IoT devices // Pervasive Mob. Comput. 2021. vol. 76. doi: 10.1016/j.pmcj.2021.101445.
  75. Rajendran S. et al. Emphasizing privacy and security of edge intelligence with machine learning for healthcare // Int. J. Intell. Comput. Cybern. 2022. vol. 15. no. 1. pp. 92–109. doi: 10.1108/IJICC-05-2021-0099.
  76. Zahid N., Sodhro A.H., Kamboh U.R., Alkhayyat A., Wang L. AI-driven adaptive reliable and sustainable approach for internet of things enabled healthcare system // Math. Biosci. Eng. 2022. vol. 19. no. 4. pp. 3953–3971. doi: 10.3934/mbe.2022182.
  77. Bhardwaj A. et al. Smart IoT and Machine Learning-based Framework for Water Quality Assessment and Device Component Monitoring // Environ. Sci. Pollut. Res. 2022. vol. 29. no. 30. pp. 46018–46036. doi: 10.1007/s11356-022-19014-3.
  78. Alsalemi A., Himeur Y., Bensaali F., Amira A. An innovative edge-based Internet of Energy solution for promoting energy saving in buildings // Sustainable Cities and Society. 2022. vol. 78. no. 103571. doi: 10.1016/j.scs.2021.103571.
  79. Khan M.A., Ghazal T.M., Lee S.-W., Rehman A. Data Fusion-Based Machine Learning Architecture for Intrusion Detection // Comput. Mater. Contin. 2022. vol. 70. no. 2. pp. 3399–3413. doi: 10.32604/cmc.2022.020173.
  80. Gültekin Ö., Cinar E., Özkan K., Yazıcı A. Real-Time Fault Detection and Condition Monitoring for Industrial Autonomous Transfer Vehicles Utilizing Edge Artificial Intelligence // Sensors. 2022. vol. 229(9). no. 3208. doi: 10.3390/s22093208.
  81. Wei L., Hou S., Liu Q. Clinical Care of Hyperthyroidism Using Wearable Medical Devices in a Medical IoT Scenario // Journal of Healthcare Engineering. 2022. vol. 2022. doi: 10.1155/2022/5951326.
  82. Nikolov G., Kuhn M., Mcgibney A., Wenning B.-L. MABASR – A Robust Wireless Interface Selection Policy for Heterogeneous Vehicular Networks // IEEE Access. 2022. vol. 10. pp. 26068–26077. doi: 10.1109/ACCESS.2022.3156597.
  83. Baek J., Kaddoum G. Online Partial Offloading and Task Scheduling in SDN-Fog Networks With Deep Recurrent Reinforcement Learning // IEEE Internet Things J. 2022. vol. 9. no. 13. pp. 11578–11589. doi: 10.1109/JIOT.2021.3130474.
  84. Thenmozhi R., Sakthivel P., Kulothungan K. Hybrid multi-objective-optimization algorithm for energy efficient priority-based QoS routing in IoT networks // Wireless Networks. 2022. doi: 10.1007/s11276-021-02848-z.
  85. Manoharan S.N., Kumar K.M.V.M., Vadivelan N.A. Novel CNN-TLSTM Approach for Dengue Disease Identification and Prevention using IoT-Fog Cloud Architecture // Neural Processing Letters. 2022. vol. 55. no. 2. pp. 1951–1973. doi: 10.1007/s11063-022-10971-x.
  86. Sithik M.M., Kumar B.M. Intelligent agent based virtual clustering and multi-context aware routing for congestion mitigation in secure RPL-IoT environment // Ad Hoc Networks. 2022. vol. 137. doi: 10.1016/j.adhoc.2022.102972.
  87. Zhang Y., Wu J., Liu M., Tan A. TSN-based routing and scheduling scheme for Industrial Internet of Things in underground mining // Engineering Applications of Artificial Intelligence. 2022. vol. 115. doi: 10.1016/j.engappai.2022.105314.
  88. Eroshkin I., Vojtech L., Neruda M. Resource Efficient Real-Time Reliability Model for Multi-Agent IoT Systems // IEEE Access. 2022. vol. 10. pp. 2578–2590. doi: 10.1109/ACCESS.2021.3138931.
  89. Zhou S., Du Y., Chen B., Li Y., Luan X. An Intelligent IoT Sensing System for Rail Vehicle Running States Based on TinyML // IEEE Access. 2022. vol. 10. pp. 98860–98871. doi: 10.1109/ACCESS.2022.3206954.
  90. Sinha A., Das D., Udutalapally V., Mohanty S.P. iThing: Designing Next-Generation Things with Battery Health Self-Monitoring Capabilities for Sustainable IIoT // IEEE Trans. Instrum. Meas. 2022. vol. 71. pp. 1–9. doi: 10.1109/TIM.2022.3216594.
  91. Manocha A., Singh R. A Novel Edge Analytics Assisted Motor Movement Recognition Framework Using Multi-Stage Convo-GRU Model // Mob. Networks Appl. 2022. vol. 27. no. 2. pp. 657–676. doi: 10.1007/s11036-019-01321-8.
  92. Bollen E. et al. A database system for querying of river networks: facilitating monitoring and prediction applications // Water Supply. 2022. vol. 22. no. 3. pp. 2832–2846. doi: 10.2166/ws.2021.433.
  93. Fournier A.M.V. et al. Structured Decision Making to Prioritize Regional Bird Monitoring Needs // INFORMS Journal on Applied Analytics. 2023. vol. 53(3). pp. 207–217. doi: 10.1287/inte.2022.1154.
  94. Fanelli S., Pratici L., Salvatore F.P., Donelli C.C., Zangrandi A. Big data analysis for decision-making processes: challenges and opportunities for the management of health-care organizations // Management Research Review. 2023. vol. 46. no. 3. pp. 369–389. doi: 10.1108/MRR-09-2021-0648.
  95. Overdal M., Haddara M., Langseth M. Exploring Public Cloud-ERP Systems’ Impact on Organizational Performance // Lect. Notes Networks Syst. 2023. vol. 561. pp. 121–137. doi: 10.1007/978-3-031-18344-7_8.
  96. Reyna A., Martín C., Chen J., Soler E., Díaz M. On blockchain and its integration with IoT. Challenges and opportunities // Futur. Gener. Comput. Syst. 2018. vol. 88. pp. 173–190. doi: 10.1016/j.future.2018.05.046.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).