Technique for Identifying Texts Generated by Large Language Models

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

The article presents a method for identifying Russian-language texts generated by large language models (LLMs). The method was developed with a focus on short messages from 100 to 200 characters long. The relevance of the work is due to the widespread use of generative models, such as GPT-3.5, GPT-4o, LLaMA, GigaChat, DeepSeek, and Yandex GPT. The method is based on an ensemble of machine learning models, and features of three levels are also used: linguistic (structure, punctuation, morphology, lexical diversity), statistical (entropy, perplexity, n-gram frequency), and semantic (RuBERT embeddings). LightGBM, BiLSTM, and the pre-trained transformer model RuRoBERTa are used as basic models, combined by stacking through logistic regression. The choice of a hybrid ensemble approach is due to the desire to take into account features at different levels of the text hierarchy and to ensure the reliability of classification in the context of different topics of generated texts, versions, and types of language models. The use of an ensemble is an advantage in the analysis of short texts, since LightGBM, based on averaged indicators, is less sensitive to length (the perplexity metric is already averaged over the entire text), while BiLSTM and RoBERTa are able to identify local features of an LLM text, and not just global ones. The dataset of natural texts includes more than 2.8 million user comments from the VK social network. The LLM text dataset contains 700 thousand texts generated by seven relevant large language models. Topic modeling (LDA) and role generation using prompt engineering were used in the text generation. The methodology was evaluated on open datasets of Russian-language LLM texts. The experimental results showed an accuracy of up to 0.95 in the binary classification task (Human–LLM) and up to 0.89 in the multi-class task of determining the model-generator. The method demonstrates robustness to the diversity of sources, styles, and LLM versions.

Авторлар туралы

A. Fedotova

TUSUR

Email: afedotowaa@yandex.ru
Lenin Ave. 40

A. Romanov

TUSUR

Email: alexx.romanov@gmail.com
Lenin Ave. 40

Әдебиет тізімі

  1. Fedotova A., Romanov A., Kurtukova A., Shelupanov A. Digital authorship attribution in Russian-language fanfiction and classical literature // Algorithms. 2022. vol. 16. no. 1.
  2. Романов А.С. Методология идентификации автора текста для решения задач информационной безопасности // Вопросы кибербезопасности. 2024. № 3(61). С. 120–128. doi: 10.21681/2311-3456-2024-3-120-128.
  3. Kurtukova A., Romanov A., Shelupanov A., Fedotova A. Complex cases of source code authorship identification using a hybrid deep neural network // Future Internet. 2022. vol. 14. no. 10. doi: 10.3390/fi14100287.
  4. Zellers R., Holtzman A., Rashkin H., Bisk Y., Farhadi A., Roesner F., Choi Y. Defending against neural fake news // Proceedings of the 33rd Int. Conf. on Neural Information Processing Systems. 2019. pp. 9054–9065.
  5. Kuznetsov, K., Tulchinskii E., Kushnareva L., Magai G., Baranniko S., Nikolenko S., Piontkovskaya I. Robust AI-Generated Text Detection by Restricted Embeddings // Findings of the Association for Computational Linguistics: EMNLP. 2024. pp. 17036–17055. doi: 10.18653/v1/2024.findings-emnlp.992.
  6. Fraser K.C., Dawkins H., Kiritchenko S. Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods // Journal of Artificial Intelligence Research. 2025. vol. 82. pp. 2233–2278. doi: 10.1613/jair.1.16665.
  7. Prajapati M., Baliarsingh S.K., Dora C., Bhoi A., Hota J., Mohanty J.P. Detection of AI-generated text using large language model // 2024 International Conference on Emerging Systems and Intelligent Computing (ESIC). 2024. pp. 735–740. doi: 10.1109/ESIC60604.2024.10481602.
  8. Mitchell E., Lee Y., Khazatsky A., Manning C.D., Finn C. Detectgpt: Zero-shot machine-generated text detection using probability curvature // Proceedings of the 40th International Conference on Machine Learning (PMLR). 2023. pp. 24950–24962.
  9. Lau H.T., Zubiaga A. Understanding the Effects of Human-written Paraphrases in LLM-generated Text Detection // arXiv preprint arXiv:2411.03806. 2024.
  10. Wu J., Yang S., Zhan R., Yuan Y., Chao L.S., Wong D.F. A survey on LLM-generated text detection: Necessity, methods, and future directions // Computational Linguistics. 2025. pp. 275–338. doi: 10.1162/coli_a_00549.
  11. GPTZero. URL: gptzero.me (дата обращения: 15.05.2025).
  12. Kavian A., Pourhashem Kallehbasti M.M., Kazemi S., Firouzi E., Ghafari M. LLM security guard for code // Proceedings of the 28th International Conference on Evaluation and Assessment in Software Engineering. 2024. pp. 600–603. doi: 10.1145/3661167.366126.
  13. Wu L. Y., Segura-Bedmar I. AI-generated Text Detection with a GLTR-based Approach // arXiv preprint. arXiv:2502.12064. 2025.
  14. OpenAI. URL: openai.com (дата обращения: 15.05.2025).
  15. OriginalityAI. URL: https://originality.ai/ (дата обращения: 15.05.2025).
  16. AI Detector & Content Checker By Copyleaks. URL: https://copyleaks.com/ai-content-detector (дата обращения: 15.05.2025).
  17. Writer. AI content detector. URL: https://writer.com/ai-content-detector/ (дата обращения: 15.05.2025).
  18. Tulchinskii E., et al. Intrinsic dimension estimation for robust detection of AI-generated texts // Advances in Neural Information Processing Systems. 2023. vol. 36. pp. 39257–39276.
  19. Nikolaev K. Development of a Neural Network Model for Recognizing Russian-Language Generated Texts // 2024 IEEE Int. Multi-Conf. on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, 2024. pp. 396–400. doi: 10.1109/SIBIRCON63777.2024.10758447.
  20. Gritsay G., Grabovoy A., Chekhovich Y. Open access dataset for machine-generated text detection in Russian. Mendeley Data. V2. 2023. doi: 10.17632/4ynxfp3w53.2.
  21. Shamardina T., et al. Findings of the the ruatd shared task 2022 on artificial text detection in Russian // arXiv preprint arXiv:2206.01583. 2022.
  22. RuATD. URL: https://github.com/dialogue-evaluation/RuATD (дата обращения: 15.05.2025).
  23. Skrylnikov S., Posokhov P., Makhnytkina O. Artificial text detection in Russian language: A BERT-based approach // Proc. Int. Conf. Dialogue. 2022. pp. 1–7.
  24. Gritsai G., Voznyuk A., Grabovoy A., Chekhovich Y. Are AI Detectors Good Enough? A Survey on Quality of Datasets With Machine-Generated Texts // arXiv e-prints. 2024. arXiv:2410.14677.
  25. Pan L., et al. MarkLLM: An Open-Source Toolkit for LLM Watermarking // Proc. of the 2024 Conf. on Empirical Methods in Natural Language Processing: System Demonstrations. 2024. pp. 61–71. doi: 10.18653/v1/2024.emnlp-demo.7.
  26. Pham C.M., et al. TopicGPT: A Prompt-based Topic Modeling Framework // arXiv e-prints. 2023. arXiv:2311.01449.
  27. Tong Z., Zhang H. A text mining research based on LDA topic modelling // International conference on computer science, engineering and information technology. 2016. pp. 201–210. DOI : 10.5121/csit.2016.60616.
  28. Geroimenko V. Key Principles of Good Prompt Design // The Essential Guide to Prompt Engineering: Key Principles, Techniques, Challenges, and Security Risks. Cham: Springer Nature Switzerland. 2025. pp. 17–36.
  29. Модели генерации текста. URL: https://yandex.cloud/ru/docs/foundation-models/concepts/yandexgpt/models (дата обращения: 15.05.2025).
  30. Yandex GPT. URL: https://ya.ru/ai/gpt (дата обращения: 15.05.2025).
  31. GiGaChat. URL: https://giga.chat/ (дата обращения: 15.05.2025).
  32. DeepSeek. URL: https://www.deepseek.com/ (дата обращения: 15.05.2025).
  33. Кузнецов С.А. Большой толковый словарь русского языка. Shangwu Yinshuguan, 2020. 1481 с.
  34. KenLM. URL: https://github.com/kpu/kenlm (дата обращения: 15.05.2025).
  35. Savkin M., Voznyuk A., Ignatov F., Korzanova A., Karpov D., Popov A., Konovalov V. DeepPavlov 1.0: Your Gateway to Advanced NLP Models Backed by Transformers and Transfer Learning // Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. 2024. pp. 465–474. doi: 10.18653/v1/2024.emnlp-demo.47.
  36. RuRoBERTa-large. URL: https://huggingface.co/ai-forever/ruRoberta-large (дата обращения: 15.05.2025).
  37. Maloyan N., Nutfullin B., Ilyushin E. Dialog-22 ruatd generated text detection // arXiv preprint arXiv:2206.08029. 2022.
  38. Gritsay G., Grabovoy A., Chekhovich Y. Automatic detection of machine generated texts: Need more tokens // 2022 Ivannikov Memorial Workshop (IVMEM). IEEE, 2022. pp. 20–26. doi: 10.1109/IVMEM57067.2022.9983964.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».