Machine Learning Applications for Delivery Time Prediction and Freight Planning

Cover Page

Cite item

Full Text

Abstract

The rapid advancement of technology has a profound impact on logistics and freight transportation. Efficient management of transportation schedules is vital for businesses seeking to minimize costs, reduce delivery delays, and improve customer satisfaction. One of the most important challenges in this field is the Vehicle Routing Problem with Time Windows (VRPTW), which requires not only finding optimal delivery routes but also adhering to specific timing constraints for each customer or delivery point. Traditional optimization methods often struggle with the complexity and dynamic nature of real-world logistics, particularly when dealing with large-scale datasets and unpredictable factors such as traffic congestion or weather conditions. To address these limitations, this study introduces a machine learning-based system that enhances the performance of existing VRPTW solutions. Unlike conventional approaches that rely solely on heuristics or static planning, our system employs modern machine learning models to predict key time-related parameters – including transit time, availability time, and service time – based on historical and contextual data. These predictive capabilities allow the routing algorithms to make more informed decisions, resulting in more accurate and adaptable scheduling. Building on previous research involving Random Forest models, we propose a more robust framework that incorporates advanced preprocessing techniques and feature engineering to improve model accuracy. By training and evaluating the system using real-world datasets, we are able to simulate practical scenarios and validate the effectiveness of our approach. Experimental results show that our proposed method consistently outperforms other commonly used machine learning models in terms of Mean Absolute Error (MAE), thus confirming its potential for real-world applications. Overall, this study contributes a scalable and intelligent solution to a longstanding logistics problem, paving the way for more responsive and cost-effective transportation systems.

About the authors

N. V Hung

East Asia University of Technology

Email: hungnv@eaut.edu.vn
Ky Anh -

T. Thu Huong

East Asia University of Technology

Email: huongtt2@eaut.edu.vn
--

N. Tan

East Asia University of Technology

Email: tan25102000@gmail.com
- -

T. C Doan

Vietnam National University Hanoi

Email: tcdoan@vnu.edu.vn
- -

N. Nam-Hoang

East Asia University of Technology

Email: hoangnguyen@eaut.edu.vn
- -

References

  1. Minh N.N., Tien N.H. Factors affecting career opportunities abroad for students of the faculty of business administration of the HCMC university of food industry. International Journal of Multidisciplinary Reseach and Growth Evaluation. 2024. vol. 5. no. 1. pp. 556–565.
  2. Li F., Yang X., Zhu R., Li T., Liu J. Growth mechanism in transformation and upgrading of logistics industry. Systems. 2025. vol. 13. no. 3. p. 202.
  3. Hung N.V., Luu D.L., Dong N.S., Lupu C. Reducing time headway for cooperative vehicle following in platoon via information flow topology. Journal of Control Engineering and Applied Informatics. 2024. vol. 26. no. 2. pp. 77–87.
  4. Maroof A., Ayvaz B., Naeem K. Logistics optimization using hybrid genetic algorithm (hga): a solution to the vehicle routing problem with time windows (vrptw). IEEE Access. 2024.
  5. Leng K., Li S. Distribution path optimization for intelligent logistics vehicles of urban rail transportation using VRP optimization model. IEEE Transactions on Intelligent Transportation Systems. 2021. vol. 23. no. 2. pp. 1661–1669.
  6. Luu D.L., Hung N.V., Lupu C. Tracking trajectory by using the polynomial method for acc system based on smart car platform. 17th International Conference on Engineering of Modern Electric Systems (EMES). IEEE, 2023. pp. 1–4.
  7. Kovacs L., Jlidi A. Neural networks for vehicle routing problem. arXiv preprint arXiv:2409.11290. 2024.
  8. Osman O., Rakha H., Mittal A. Application of long short term memory networks for long-and short-term bus travel time prediction. Preprints. 2021. vol. 2021040269.
  9. Iklassov Z., Sobirov I., Solozabal R., Takac M. Reinforcement learning for solving stochastic vehicle routing problem with time windows. arXiv preprint arXiv:2402.09765. 2024.
  10. Daouda A.S.M., Atila U. A hybrid particle swarm optimization with tabu search for optimizing aid distribution route. Artificial Intelligence Studies. 2024. vol. 7. no. 1. pp. 10–27.
  11. Dewantoro R.W., Sihombing P. et al. The combination of ant colony optimization (aco) and tabu search (ts) algorithm to solve the traveling salesman problem (tsp). 3rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM). IEEE, 2019. pp. 160–164.
  12. Rohini V., Natarajan A. Comparison of genetic algorithm with particle swarm optimisation, ant colony optimisation and tabu search based on university course scheduling system. Indian Journal of Science and Technology. 2016. vol. 9. no. 21. pp. 1–5.
  13. Chen J., Gui P., Ding T., Na S., Zhou Y. Optimization of transportation routing problem for fresh food by improved ant colony algorithm based on tabu search. Sustainability. 2019. vol. 11. no. 23. p. 6584.
  14. Zinov V., Kartak V., Valiakhmetova Y. Solving multi-objective rational placement of load-bearing walls problem via genetic algorithm. Informatics and Automation. 2025. vol. 24. no. 2. pp. 464–491.
  15. Gharbi A., Ayari M., El Touati Y. Intelligent agent-controlled elevator system: Algorithm and efficiency optimization. Informatics and Automation. 2025. vol. 24. no. 1. pp. 30–50.
  16. Nazari M., Oroojlooy A., Snyder L., Takac M. Reinforcement learning for solving the vehicle routing problem. Advances in neural information processing systems. 2018. vol. 31.
  17. Wu R., Wang R., Hao J., Wu Q., Wang P., Niyato D. Multiobjective vehicle routing optimization with time windows: A hybrid approach using deep reinforcement learning and nsga-ii. IEEE Transactions on Intelligent Transportation Systems. 2024.
  18. Ata K.I.M., Hassan M.K., Ismaeel A.G., Al-Haddad S.A.R., Alani S. et al. A multi-layer cnn-gruskip model based on transformer for spatial-temporal traffic flow prediction. Ain Shams Engineering Journal. 2024. vol. 15. no. 12. p. 103045.
  19. Zhang X., Chan K.W., Li H., Wang H., Qiu J., Wang G. Deep-learning-based probabilistic forecasting of electric vehicle charging load with a novel queuing model. IEEE transactions on cybernetics. 2020. vol. 51. no. 6. pp. 3157–3170.
  20. Yang Y.-Q., Lin J., Zheng Y.-B. Short-time traffic forecasting in tourist service areas based on a cnn and gru neural network. Applied Sciences. 2022. vol. 12. no. 18. p. 9114.
  21. Guo F., Wei Q., Wang M., Guo Z., Wallace S.W. Deep attention models with dimension-reduction and gate mechanisms for solving practical time-dependent vehicle routing problems. Transportation research part E: logistics and transportation review. 2023. vol. 173. p. 103095.
  22. Zafar N., Haq I.U., Chughtai J.-u.-R., Shafiq O. Applying hybrid lstm-gru model based on heterogeneous data sources for traffic speed prediction in urban areas. Sensors. 2022. vol. 22. no. 9. p. 3348.
  23. Hou M., Liu S., Zheng Q., Liu C., Zhang X., Kang C. A deep learning based communication traffic prediction approach for smart monitoring of distributed energy resources in virtual power plants. IET Smart Grid. 2024. vol. 7. no. 5. pp. 653–671.
  24. Hung N.V., Luu D.L., Pham Q.T., Lupu C. Comparative analysis of different spacing policies for longitudinal control in vehicle platooning. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2024. doi: 10.1177/09544070241273985.
  25. Kool W., Van Hoof H., Welling M. Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475. 2018.
  26. Cheng Q., Yuangyai C., Zhan Y.-Q., Cheng C.-Y. Optimizing vehicle routing by incorporating driver preferences: A pointer network and deep q network (pndqn) approach.
  27. Li K., Zhang T., Wang R. Deep reinforcement learning for multiobjective optimization. IEEE transactions on cybernetics. 2020. vol. 51. no. 6. pp. 3103–3114.
  28. Jiang W., Han H., Zhang Y., Wang J., He M., Gu W., Mu J., Cheng X. Graph neural networks for routing optimization: Challenges and opportunities. Sustainability. 2024. vol. 16. no. 21. p. 9239. doi: 10.3390/su16219239.
  29. Bahovska E. Graph neural networks in neighbourhood selection for a vehicle routing problem solver. Master’s thesis. 2023.
  30. Tien Z.C., Qi-lee J. Enhancing vehicle routing problem solutions through deep reinforcement learning and graph neural networks. International Journal of Enterprise Modelling. 2022. vol. 16. no. 3. pp. 125–135.
  31. Nguyen H., Dao T.N., Pham N.S., Dang T.L., Nguyen T.D., Truong T.H. An accurate viewport estimation method for 360 video streaming using deep learning. EAI Endorsed Trans. Ind. Networks Intell. Syst. 2022. vol. 9. no. 4. p. e2. doi: 10.4108/eetinis.v9i4.2218.
  32. Inzillo V., Garompolo D., Giglio C. Enhancing smart city connectivity: A multi-metric cnn-lstm beamforming based approach to optimize dynamic source routing in 6g networks for MANETs and VANETs. Smart Cities. 2024. vol. 7. no. 5. pp. 3022–3054.
  33. “solomon-100”. Available at: https://www.sintef.no/globalassets/project/top/vrptw/solomon/solomon-100.zip (accessed 30.05.2025).
  34. “solomon-200”. Available at: https://www.sintef.no/globalassets/project/top/vrptw/homberger/200/homberger_200_customer_instances.zip (accessed 30.05.2025).
  35. “solomon-400”. Available at: https://www.sintef.no/globalassets/project/top/vrptw/homberger/400/homberger_400_customer_instances.zip (accessed 30.05.2025).
  36. Weisstein E.W. Distance. html, 2003, from MathWorld – A Wolfram Web Resource. Available at: https://mathworld.wolfram.com/Distance (accessed 30.05.2025).
  37. Solomon M.M. Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints. Operations Research. 1987. vol. 35. no. 2. pp. 166–324.
  38. Kim Y.H., Kim I., Kim Y.-J., Kim M., Cho J.-H., Hong M., Kang K.-H., Lim S.-H., Kim S.-J., Kim N. et al. The prediction of sagittal chin point relapse following two-jaw surgery using machine learning. Scientific Reports. 2023. vol. 13. no. 1. doi: 10.1038/s41598-023-44207-2.
  39. Sulistio B., Warnars H.L.H.S., Gaol F.L., Soewito B. Energy sector stock price prediction using the CNN, GRU & LSTM hybrid algorithm. International Conference on Computer Science, Information Technology and Engineering (ICCoSITE). IEEE, 2023. pp. 178–182.
  40. Gorishniy Y., Rubachev I., Khrulkov V., Babenko A. Revisiting deep learning models for tabular data. Advances in neural information processing systems. 2021. vol. 34. pp. 18932–18943.
  41. Popov S., Morozov S., Babenko A. Neural oblivious decision ensembles for deep learning on tabular data. arXiv preprint arXiv:1909.06312. 2019.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».