EWT-CGAN Data Augmentation for Measurement Systems
- Authors: Erpalov A.V1, Sinitsin V.V1, Shestakov A.L1
-
Affiliations:
- South Ural State University (National Research University)
- Issue: Vol 24, No 4 (2025)
- Pages: 1157-1181
- Section: Artificial intelligence, knowledge and data engineering
- URL: https://journals.rcsi.science/2713-3192/article/view/350737
- DOI: https://doi.org/10.15622/ia.24.4.6
- ID: 350737
Cite item
Full Text
Abstract
About the authors
A. V Erpalov
South Ural State University (National Research University)
Email: erpalovav@susu.ru
Lenin Ave. 76
V. V Sinitsin
South Ural State University (National Research University)
Email: sinitcinvv@susu.ru
Lenin Ave. 76
A. L Shestakov
South Ural State University (National Research University)
Email: president@susu.ru
Lenin Ave. 76
References
- Musa N., Gital A.Y., Aljojo N., et al. A systematic review and Meta-data analysis on the applications of Deep Learning in Electrocardiogram. J. Ambient Intell. Humaniz. Comput. 2023. vol. 14. no. 7. pp. 9677–9750. doi: 10.1007/s12652-022-03868-z.
- Zhang D., Ma M., Xia L. A comprehensive review on GANs for time-series signals. Neural Comput. Appl. 2022. vol. 34. no. 5. pp. 3551–3571. doi: 10.1007/s00521-022-06888-0.
- Brophy E., Wang Z., She Q., Ward T. Generative Adversarial Networks in Time Series: A Systematic Literature Review. ACM Comput. Surv. 2023. vol. 55. no. 10. doi: 10.1145/3559540.
- Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D., Ozair S., Courville A., Bengio Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014. vol. 27. pp. 2672–2680.
- Radford A., Metz L., Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. 4th Int. Conf. Learn. Represent. (ICLR 2016). 2016. pp. 1–16.
- Karras T., Aila T., Laine S., Lehtinen J. Progressive growing of GANs for improved quality, stability, and variation. 6th Int. Conf. Learn. Represent. (ICLR 2018). 2018. pp. 1–26.
- Mirza M., Osindero S. Conditional Generative Adversarial Nets. arXiv preprint arXiv:1411.1784. 2014. pp. 1–7.
- Mao X., Li Q., Xie H., Lau R.Y.K., Wang Z., Smolley S.P. Least Squares Generative Adversarial Networks. Proc. IEEE Int. Conf. Comput. Vis. (ICCV). 2017. vol. 2017. pp. 2813–2821. doi: 10.1109/ICCV.2017.304.
- Arjovsky M., Chintala S., Bottou L. Wasserstein GAN. Proceedings of the 34 th International Conference on Machine Learning. 2017. vol. 70. pp. 214–223.
- Fabbri C. Conditional Wasserstein Generative Adversarial Networks. 2017.
- Akcay S., Atapour-Abarghouei A., Breckon T.P. GANomaly: Semi-supervised Anomaly Detection via Adversarial Training. Lect. Notes Comput. Sci. 2019. vol. 11363. pp. 622–637. doi: 10.1007/978-3-030-20893-6_39.
- Zenati H., Foo C.-S., Lecouat B., Manek G., Chandrasekhar V.R. Efficient GAN-Based Anomaly Detection. 2018.
- Maaten L. van der Hinton G. Visualizing Data using t-SNE. Journal of Machine Learning Research. 2008. vol. 9. pp. 2579–2605.
- Bryant F.B., Yarnold P.R. Principal-components analysis and exploratory and confirmatory factor analysis. Reading and understanding multivariate statistics. Washington, DC, US: American Psychological Association, 1995. pp. 99–136.
- Yoon J., Jarrett D., van der Schaar M. Time-series generative adversarial networks. Adv. Neural Inf. Process. Syst. 2019. vol. 32. pp. 1–11.
- Salimans T., Goodfellow I., Zaremba W., Cheung V., Randford A., Chen X. Improved techniques for training GANs. 30th Conference on Neural Information Processing Systems (NIPS 2016). Barcelona, 2016.
- Heusel M., Ramsauer H., Unterthiner T., Nessler B., Hochreiter S. GANs trained by a two time-scale update rule converge to a local Nash equilibrium. Adv. Neural Inf. Process. Syst. 2017. vol. 2017. pp. 6626–6637.
- Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004. vol. 13. no. 4. pp. 600–612. doi: 10.1109/TIP.2003.819861.
- Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.-C., Tung C.C., Liu H.H. The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 1998. vol. 454. pp. 903–995. doi: 10.1098/rspa.1998.0193.
- Dragomiretskiy K., Zosso D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014. vol. 62. no. 3. pp. 531–544. doi: 10.1109/TSP.2013.2288675.
- Gilles J. Empirical wavelet transform. IEEE Trans. Signal Process. 2013. vol. 61. no. 16. pp. 3999–4010. doi: 10.1109/TSP.2013.2265222.
- Singh P., Joshi S.D., Patney R.K., Saha K. The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017. vol. 473. no. 2199. doi: 10.1098/rspa.2016.0871.
- Gilles J. Empirical Wavelet Transform. IEEE Trans. Signal Process. 2013. vol. 61. no. 16. pp. 3999–4010. doi: 10.1109/TSP.2013.2265222.
Supplementary files


